算法竞赛--数学知识

文章介绍了几种基础且重要的数论算法,包括线性筛法用于寻找素数,快速幂用于高效计算幂次,以及如何计算数的约数个数。此外,还讲解了反素数的概念,欧拉函数的计算,费马小定理的应用,以及卢卡斯定理在组合数计算中的作用。最后提到了裴蜀定理和扩展欧几里得算法在求解模线性方程中的应用。
摘要由CSDN通过智能技术生成

筛素数(线性筛法)

1-n内大约有 n/ln(n)个素数。

int primes[N], cnt;     // primes[]存储所有素数
bool st[N];         // st[x]存储x是否被筛掉

void get_primes(int n)
{
    for (int i = 2; i <= n; i ++ )
    {
        if (!st[i]) primes[cnt ++ ] = i;
        for (int j = 0; primes[j] <= n / i; j ++ )
        {
            st[primes[j] * i] = true;
            if (i % primes[j] == 0) break;
        }
    }
}

 快速幂

int qmi(int m, int k, int p)
{
    int res = 1 % p, t = m;
    while (k)
    {
        if (k&1) res = res * t % p;
        t = t * t % p;
        k >>= 1;
    }
    return res;
}

求约数个数

假如去求1-n所有数约数的总和,不能一个一个求每个数的约数,时间复杂度较高,是O(n*sqrt(n))。我们可以求每一个数的倍数哪些,时间复杂度可以降到O(n*log(n))。

    for(int i=1;i<=M;i++)
    {
        for(int j=i;j<=M;j+=i)
        {
            s[j]+=1; //s[j]存储j的约数个数
        }
    }

反素数

反素数指的是1-n的范围内约数最多的数(约数一样多,取较小者)。

反素数有如下几个性质:1、质因子在为2e9的范围内,最多只有9个。  2、每个质因子的次数最多不超过30。  3、质因子越小,次数越大。

因为一个数的质因子不多,故可以使用搜索求解。

#include<iostream>
#include<algorithm>
using namespace std;

typedef long long LL;
int primes[] = {2,3,5,7,11,13,17,19,23};
int n,maxd,number;

void dfs(int u,int last,int p,int s) //p表示当前这个数多大,s代表当前约数的个数
{
    if(s>maxd || s==maxd && p<number )
    {
        maxd = s;
        number = p;
    }
    if(u==9) return;
    
    for(int i=1;i<=last;i++)
    {
        if((LL)p*primes[u]>n) break;
        p*=primes[u];
        dfs(u+1,i,p,s*(i+1));
    }
}

int main()
{
    cin>>n;
    dfs(0,30,1,1);
    cout<<number;
    return 0;
}

线性筛法求欧拉函数

phi[i] 表示小于i与i互质数的个数,需要注意的是,如果i是个质数,那么 phi[i] = i-1。

int phi[N],primes[N],st[N];
int cnt;

void init(int n)
{
    for(int i=2;i<=n;i++)
    {
        if(!st[i]) 
        {
            primes[cnt++] = i;
            phi[i] = i-1;
        }
        for(int j=0;primes[j]*i<=n;j++)
        {
            st[primes[j]*i] = true;
            if(i%primes[j]==0) 
            {
                phi[i * primes[j]] = phi[i] * primes[j];
                break;
            }
            phi[i * primes[j]] = phi[i] * (primes[j] - 1);
        }
    }
}

费马小定理

如果a与p互质,那么a的p-1次方mod p =1,该定理可以求解某个数同余的逆元。即把除以某个数取模,转变为乘上某个数取模。多用在组合数计算中。

int fact[N],infact[N];

int qmi(int a,int b)
{
    int res=1;
    while(b)
    {
        if(b&1)
        {
            res=a*res%mod;
        }
        a=a*a%mod;
        b>>=1;
    }
    return res;
}

int main()
{
    fact[0]=infact[0]=1;
    for(int i=1;i<N;i++)
    {
        fact[i] = fact[i-1]*i%mod;
        infact[i] = infact[i-1]*qmi(i,mod-2)%mod;
    }
}

卢卡斯定理(求解组合数)

当组合数的下标和上标较大时,就需要使用Lucas定理求解组合数,并且组合数必须取模一个p,p为质数。 0<=m,n<=1e18,0<p<1e5。

#include<iostream>
#define int long long
using namespace std;

const int N = 1e5 + 10;
int f[N], g[N];
int qmi(int a, int b, int p)
{
	int res = 1;
	while (b)
	{
		if (b & 1) res = res * a % p;
		a = a * a % p;
		b >>= 1;
	}
	return res;
}

int getc(int n, int m, int p)
{
	return f[n] * g[m] * g[n - m]%p;  
	//f表示阶乘,g表示乘法逆元,需要用快速幂和费马小定理求解
}

int Lucas(int n, int m, int p)
{
	if (m == 0) return 1;
	return Lucas(n / p, m / p, p) * getc(n % p, m % p, p) % p;
}


int main()
{
	int T;
	cin >> T;
	f[0] = g[0] = 1;
	while (T--)
	{
		int n, m;
		int p;
		cin >> n >> m >> p;
		for (int i = 1; i < N; i++)
		{
			f[i] = f[i - 1] * i % p;
			g[i] = g[i - 1] * qmi(i, p - 2, p) % p;
		}
		cout << Lucas(n+m, m, p) << endl;
	}
	return 0;
}

裴蜀定理

 

 扩展欧几里得算法

 

int exgcd(int a, int b, int& x, int& y)
{
	if (b == 0)
	{
		x = 1, y = 0;
		return a;
	}
	int x1, y1, d;
	d = exgcd(b, a % b, x1, y1);
	x = y1, y1 = x1 - a / b * y1;
	return d;
}

 

 假如最后要求得解是最小正整数,可以使用模加模的技巧,eg: (x%m+x)%m

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值