前言
取最大公因数是c语言中经常出现的问题(大部分是题目涉及)。
一、什么是辗转相除法?
辗转相除法,又称欧几里得算法,是一种通过不断相除求余数(直到被除数为0)来最终获得最大公约数的方法。其表达形式为:gcd(a,b)=gcd(b,a%b),原理如下:
设两数为a、b(a>b),用gcd(a,b)表示a,b的最大公约数,r=a (mod b) 为a除以b的余数,k为a除以b的商,即a÷b=kr。辗转相除法即是要证明gcd(a,b)=gcd(b,r)。
第一步:令c=gcd(a,b),则设a=mc,b=nc
第二步:根据前提可知r =a-kb=mc-knc=(m-kn)c
第三步:根据第二步结果可知c也是r的因数
第四步:可以断定m-kn与n互质(假设m-kn=xd,n=yd (d>1),则m=kn+xd=kyd+xd=(ky+x)d,则a=mc=(ky+x)cd,b=nc=ycd,则a与b的一个公约数cd>c,故c非a与b的最大公约数,与前面结论矛盾),因此c也是b与r的最大公约数。
从而可知gcd(b,r)=c,继而gcd(a,b)=gcd(b,r)。
证毕。
以上步骤的操作是建立在刚开始时r≠0的基础之上的。即m与n亦互质。
以上为百度百科的证法。对我来说很难理解(数论特别拉跨)。费了很长时间有了一下见解:
设gcd(a,b)=c(即c为a,b最大公约数且a>b)。
则a=mc,b=nc。
a可以分解成kb+dc。(dc≠0)(因为a>b,所以m>n且m和n都为整数)。
其中kb%b=0且kb%c=0,可以理解为这是a与b相同(仅仅是作用上的相同)的部分(就是多余的部分,因为是b的倍数,所以最大公约数只会在余下的dc和b中产生)所以可以把kb去掉,仅用剩下的dc与b来求最大公约数。一直持续下去直到b’为0,此时的a‘就是原来的a和b的最大公约数。
二、代码实现
int gcd(int x,int y){
return y==0?x:gcd(y,x%y);
}
辗转相除法的实现方法是递归,代码本身是十分简单。
总结
欧几里得算法本身在算法中并不是很实用,尤其是它本身涉及到数论的理解更让人却步,但实际上欧几里得的算法经改进后的实用价值非常客观
待补充
......