【23-24 秋学期】NNDL 作业9 RNN - SRN

简单循环网络(Simple Recurrent Network,SRN)只有一个隐藏层的神经网络.

目录

1. 实现SRN

 (1)使用numpy

(2)在1的基础上,增加激活函数tanh

​编辑 

(3)使用nn.RNNCell实现 

(4)使用nn.RNN实现 

 2. 实现“序列到序列” 

3. “编码器-解码器”的简单实现

4.简单总结nn.RNNCell、nn.RNN

5.谈一谈对“序列”、“序列到序列”的理解

6.总结本周理论课和作业,写心得体会


1. 实现SRN

 (1)使用numpy

import numpy as np
 
inputs = np.array([[1., 1.],
                   [1., 1.],
                   [2., 2.]])  # 初始化输入序列
print('inputs is ', inputs)
 
state_t = np.zeros(2, )  # 初始化存储器
print('state_t is ', state_t)
 
w1, w2, w3, w4, w5, w6, w7, w8 = 1., 1., 1., 1., 1., 1., 1., 1.
U1, U2, U3, U4 = 1., 1., 1., 1.
print('--------------------------------------')
for input_t in inputs:
    print('inputs is ', input_t)
    print('state_t is ', state_t)
    in_h1 = np.tanh(np.dot([w1, w3], input_t) + np.dot([U2, U4], state_t))
    in_h2 = np.tanh(np.dot([w2, w4], input_t) + np.dot([U1, U3], state_t))
    state_t = in_h1, in_h2
    output_y1 = np.dot([w5, w7], [in_h1, in_h2])
    output_y2 = np.dot([w6, w8], [in_h1, in_h2])
    print('output_y is ', output_y1, output_y2)
    print('---------------')

 运行结果:

 

(2)在1的基础上,增加激活函数tanh

import numpy as np
 
inputs = np.array([[1., 1.],
                   [1., 1.],
                   [2., 2.]])  # 初始化输入序列
print('inputs is ', inputs)
 
state_t = np.zeros(2, )  # 初始化存储器
print('state_t is ', state_t)
 
w1, w2, w3, w4, w5, w6, w7, w8 = 1., 1., 1., 1., 1., 1., 1., 1.
U1, U2, U3, U4 = 1., 1., 1., 1.
print('--------------------------------------')
for input_t in inputs:
    print('inputs is ', input_t)
    print('state_t is ', state_t)
    in_h1 = np.tanh(np.dot([w1, w3], input_t) + np.dot([U2, U4], state_t))
    in_h2 = np.tanh(np.dot([w2, w4], input_t) + np.dot([U1, U3], state_t))
    state_t = in_h1, in_h2
    output_y1 = np.dot([w5, w7], [in_h1, in_h2])
    output_y2 = np.dot([w6, w8], [in_h1, in_h2])
    print('output_y is ', output_y1, output_y2)
    print('---------------')

运行结果: 

 

(3)使用nn.RNNCell实现 

import torch
 
batch_size = 1
seq_len = 3  # 序列长度
input_size = 2  # 输入序列维度
hidden_size = 2  # 隐藏层维度
output_size = 2  # 输出层维度
 
# RNNCell
cell = torch.nn.RNNCell(input_size=input_size, hidden_size=hidden_size)
# 初始化参数 https://zhuanlan.zhihu.com/p/342012463
for name, param in cell.named_parameters():
    if name.startswith("weight"):
        torch.nn.init.ones_(param)
    else:
        torch.nn.init.zeros_(param)
# 线性层
liner = torch.nn.Linear(hidden_size, output_size)
liner.weight.data = torch.Tensor([[1, 1], [1, 1]])
liner.bias.data = torch.Tensor([0.0])
 
seq = torch.Tensor([[[1, 1]],
                    [[1, 1]],
                    [[2, 2]]])
hidden = torch.zeros(batch_size, hidden_size)
output = torch.zeros(batch_size, output_size)
 
for idx, input in enumerate(seq):
    print('=' * 20, idx, '=' * 20)
 
    print('Input :', input)
    print('hidden :', hidden)
 
    hidden = cell(input, hidden)
    output = liner(hidden)
    print('output :', output)

运行结果:

 

(4)使用nn.RNN实现 

 

import torch
 
batch_size = 1
seq_len = 3
input_size = 2
hidden_size = 2
num_layers = 1
output_size = 2
 
cell = torch.nn.RNN(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers)
for name, param in cell.named_parameters():  # 初始化参数
    if name.startswith("weight"):
        torch.nn.init.ones_(param)
    else:
        torch.nn.init.zeros_(param)
 
# 线性层
liner = torch.nn.Linear(hidden_size, output_size)
liner.weight.data = torch.Tensor([[1, 1], [1, 1]])
liner.bias.data = torch.Tensor([0.0])
 
inputs = torch.Tensor([[[1, 1]],
                       [[1, 1]],
                       [[2, 2]]])
hidden = torch.zeros(num_layers, batch_size, hidden_size)
out, hidden = cell(inputs, hidden)
 
print('Input :', inputs[0])
print('hidden:', 0, 0)
print('Output:', liner(out[0]))
print('--------------------------------------')
print('Input :', inputs[1])
print('hidden:', out[0])
print('Output:', liner(out[1]))
print('--------------------------------------')
print('Input :', inputs[2])
print('hidden:', out[1])
print('Output:', liner(out[2]))

运行结果:

 

       总结一下nn.RNNCell()和nn.RNN():这两种方式的区别在于nn.RNNCell()只能接受序列中单步的输入,且必须传入隐藏状态,而nn.RNN()可以接受一个序列的输入,默认会传入全 0 的隐藏状态,也可以自己申明隐藏状态传入。一般情况下我们都是用nn.RNN()而不是nn.RNNCell(),因为 nn.RNN() 能够避免我们手动写循环,非常方便。

2. 实现“序列到序列” 

观看视频,学习RNN原理,并实现视频P12中的教学案例:12.循环神经网络(基础篇)_哔哩哔哩_bilibili

import torch
batch_size = 1
seq_len = 3
input_size = 4
hidden_size = 2
num_layers = 1
cell = torch.nn.RNN(input_size=input_size, hidden_size=hidden_size,
num_layers=num_layers, batch_first=True)
# (seqLen, batchSize, inputSize)
inputs = torch.randn(batch_size, seq_len, input_size)
hidden = torch.zeros(num_layers, batch_size, hidden_size)
out, hidden = cell(inputs, hidden)
print('Output size:', out.shape)
print('Output:', out)
print('Hidden size: ', hidden.shape)
print('Hidden: ', hidden)

 

 实现序列到序列:

import torch
input_size=4
hidden_size=4
batch_size=1
idx2char=['e','h','l','o']
x_data=[1,0,2,2,3]
y_data=[3,1,2,3,2]
one_hot_lookup=[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
x_one_hot=[one_hot_lookup[x] for x in x_data]
inputs=torch.Tensor(x_one_hot).view(-1,batch_size,input_size)
labels=torch.LongTensor(y_data).view(-1,1)
class Model(torch.nn.Module):
    def __init__(self,input_size,hidden_size,batch_size):
        super(Model,self).__init__()
        self.batch_size=batch_size
        self.input_size=input_size
        self.hidden_size=hidden_size
        self.rnncell=torch.nn.RNNCell(input_size=self.input_size,hidden_size=self.hidden_size)
    def forward(self,input,hidden):
        hidden=self.rnncell(input,hidden)
        return hidden
    def init_hidden(self):
        return torch.zeros(self.batch_size,self.hidden_size)
net=Model(input_size,hidden_size,batch_size)
criterion=torch.nn.CrossEntropyLoss()
optimizer=torch.optim.Adam(net.parameters(),lr=0.1)
for epoch in range(15):
    loss=0
    optimizer.zero_grad()
    hidden=net.init_hidden()
    print('Predicted string:',end='')
    for input,label in zip(inputs,labels):
        hidden=net(input,hidden)
        loss+=criterion(hidden,label)
        _,idx=hidden.max(dim=1)
        print(idx2char[idx.item()],end='')
    loss.backward()
    optimizer.step()
    print(',Epoch [%d/15] loss=%.4f'%(epoch+1,loss.item()))

 

3. “编码器-解码器”的简单实现

编码器-解码器是一种深度学习架构,通常用于处理序列到序列(Seq2Seq)的任务,如机器翻译、文本摘要、阅读理解、语音识别等。它由两部分组成:编码器和解码器。

编码器部分使用卷积神经网络(CNN)来将输入序列编码成一个固定长度的向量表示。这个向量包含了输入序列的重要特征信息。
解码器部分使用循环神经网络(RNN)来将编码器输出的向量解码成目标序列。解码器通过学习来生成与目标序列相匹配的输出。

 

# code by Tae Hwan Jung(Jeff Jung) @graykode, modify by wmathor
import torch
import numpy as np
import torch.nn as nn
import torch.utils.data as Data

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# S: Symbol that shows starting of decoding input
# E: Symbol that shows starting of decoding output
# ?: Symbol that will fill in blank sequence if current batch data size is short than n_step

letter = [c for c in 'SE?abcdefghijklmnopqrstuvwxyz']
letter2idx = {n: i for i, n in enumerate(letter)}

seq_data = [['man', 'women'], ['black', 'white'], ['king', 'queen'], ['girl', 'boy'], ['up', 'down'], ['high', 'low']]

# Seq2Seq Parameter
n_step = max([max(len(i), len(j)) for i, j in seq_data])  # max_len(=5)
n_hidden = 128
n_class = len(letter2idx)  # classfication problem
batch_size = 3


def make_data(seq_data):
    enc_input_all, dec_input_all, dec_output_all = [], [], []

    for seq in seq_data:
        for i in range(2):
            seq[i] = seq[i] + '?' * (n_step - len(seq[i]))  # 'man??', 'women'

        enc_input = [letter2idx[n] for n in (seq[0] + 'E')]  # ['m', 'a', 'n', '?', '?', 'E']
        dec_input = [letter2idx[n] for n in ('S' + seq[1])]  # ['S', 'w', 'o', 'm', 'e', 'n']
        dec_output = [letter2idx[n] for n in (seq[1] + 'E')]  # ['w', 'o', 'm', 'e', 'n', 'E']

        enc_input_all.append(np.eye(n_class)[enc_input])
        dec_input_all.append(np.eye(n_class)[dec_input])
        dec_output_all.append(dec_output)  # not one-hot

    # make tensor
    return torch.Tensor(enc_input_all), torch.Tensor(dec_input_all), torch.LongTensor(dec_output_all)


'''
enc_input_all: [6, n_step+1 (because of 'E'), n_class]
dec_input_all: [6, n_step+1 (because of 'S'), n_class]
dec_output_all: [6, n_step+1 (because of 'E')]
'''
enc_input_all, dec_input_all, dec_output_all = make_data(seq_data)


class TranslateDataSet(Data.Dataset):
    def __init__(self, enc_input_all, dec_input_all, dec_output_all):
        self.enc_input_all = enc_input_all
        self.dec_input_all = dec_input_all
        self.dec_output_all = dec_output_all

    def __len__(self):  # return dataset size
        return len(self.enc_input_all)

    def __getitem__(self, idx):
        return self.enc_input_all[idx], self.dec_input_all[idx], self.dec_output_all[idx]


loader = Data.DataLoader(TranslateDataSet(enc_input_all, dec_input_all, dec_output_all), batch_size, True)


# Model
class Seq2Seq(nn.Module):
    def __init__(self):
        super(Seq2Seq, self).__init__()
        self.encoder = nn.RNN(input_size=n_class, hidden_size=n_hidden, dropout=0.5)  # encoder
        self.decoder = nn.RNN(input_size=n_class, hidden_size=n_hidden, dropout=0.5)  # decoder
        self.fc = nn.Linear(n_hidden, n_class)

    def forward(self, enc_input, enc_hidden, dec_input):
        # enc_input(=input_batch): [batch_size, n_step+1, n_class]
        # dec_inpu(=output_batch): [batch_size, n_step+1, n_class]
        enc_input = enc_input.transpose(0, 1)  # enc_input: [n_step+1, batch_size, n_class]
        dec_input = dec_input.transpose(0, 1)  # dec_input: [n_step+1, batch_size, n_class]

        # h_t : [num_layers(=1) * num_directions(=1), batch_size, n_hidden]
        _, h_t = self.encoder(enc_input, enc_hidden)
        # outputs : [n_step+1, batch_size, num_directions(=1) * n_hidden(=128)]
        outputs, _ = self.decoder(dec_input, h_t)

        model = self.fc(outputs)  # model : [n_step+1, batch_size, n_class]
        return model


model = Seq2Seq().to(device)
criterion = nn.CrossEntropyLoss().to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)

for epoch in range(5000):
    for enc_input_batch, dec_input_batch, dec_output_batch in loader:
        # make hidden shape [num_layers * num_directions, batch_size, n_hidden]
        h_0 = torch.zeros(1, batch_size, n_hidden).to(device)

        (enc_input_batch, dec_intput_batch, dec_output_batch) = (
            enc_input_batch.to(device), dec_input_batch.to(device), dec_output_batch.to(device))
        # enc_input_batch : [batch_size, n_step+1, n_class]
        # dec_intput_batch : [batch_size, n_step+1, n_class]
        # dec_output_batch : [batch_size, n_step+1], not one-hot
        pred = model(enc_input_batch, h_0, dec_intput_batch)
        # pred : [n_step+1, batch_size, n_class]
        pred = pred.transpose(0, 1)  # [batch_size, n_step+1(=6), n_class]
        loss = 0
        for i in range(len(dec_output_batch)):
            # pred[i] : [n_step+1, n_class]
            # dec_output_batch[i] : [n_step+1]
            loss += criterion(pred[i], dec_output_batch[i])
        if (epoch + 1) % 1000 == 0:
            print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.6f}'.format(loss))

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()


# Test
def translate(word):
    enc_input, dec_input, _ = make_data([[word, '?' * n_step]])
    enc_input, dec_input = enc_input.to(device), dec_input.to(device)
    # make hidden shape [num_layers * num_directions, batch_size, n_hidden]
    hidden = torch.zeros(1, 1, n_hidden).to(device)
    output = model(enc_input, hidden, dec_input)
    # output : [n_step+1, batch_size, n_class]

    predict = output.data.max(2, keepdim=True)[1]  # select n_class dimension
    decoded = [letter[i] for i in predict]
    translated = ''.join(decoded[:decoded.index('E')])

    return translated.replace('?', '')


print('test')
print('man ->', translate('man'))
print('mans ->', translate('mans'))
print('king ->', translate('king'))
print('black ->', translate('black'))
print('up ->', translate('up'))

 

 

4.简单总结nn.RNNCell、nn.RNN

nn.RNNCellnn.RNN是PyTorch中用于构建循环神经网络(RNN)的类。

nn.RNNCell是一个简单的RNN单元,可以看作是RNN的基本构建块。它接受当前输入、上一个隐藏状态和上一个输出作为输入,并输出当前隐藏状态和当前输出。它没有提供序列间连接,因此通常用于构建单层RNN。

nn.RNN是一个多层的RNN实现,它将一系列nn.RNNCell连接在一起。它接受一个nn.RNNCell对象和一个输入维度作为参数,并返回一个输出维度。与nn.RNNCell不同,nn.RNN可以处理变长输入序列,并提供序列间连接。Pytorch中nn.RNN的数据处理如下图:

这两个类都提供了前向传播方法,用于计算给定输入的输出。它们还支持使用梯度下降方法进行反向传播,以更新模型参数。

总之,nn.RNNCellnn.RNN是PyTorch中用于构建循环神经网络的基本类。nn.RNNCell是构建单层RNN的基本单元,而nn.RNN则是将多个RNN单元连接在一起的多层RNN实现。

5.谈一谈对“序列”、“序列到序列”的理解

“序列”:在自然语言处理中,序列通常指的是一段连续的文字、语音或其他类型的数据。这些数据可以按照时间或其他顺序进行排列,例如一句话中的单词或一个字符串中的字符。序列数据的一个重要特点是它们具有顺序性,即数据的顺序对于理解其含义非常重要。

“序列到序列”:序列到序列(Seq2Seq)模型是一种处理序列数据的机器学习方法。这种模型将一个输入序列映射到一个输出序列,因此得名“序列到序列”。Seq2Seq模型通常用于机器翻译、语音识别、文本摘要等任务,其中输入和输出都是变长序列。

在Seq2Seq模型中,输入序列被编码器(Encoder)转换为一个固定长度的向量,然后这个向量被解码器(Decoder)转换为输出序列。编码器和解码器通常都是循环神经网络(RNN)或其变种,例如长短时记忆网络(LSTM)或门控循环单元(GRU)。这种结构允许模型处理变长输入和输出序列,并且可以通过训练来学习如何将输入序列映射到输出序列。

6.总结本周理论课和作业,写心得体会

这周主要学习了循环神经网络的一些信息:

RNN跟传统神经网络最大的区别在于每次都会将前一次的输出结果,带到下一次的隐藏层中,一起训练。RNN可以适应不同长度的输入序列,因为它们在处理每个输入步骤时都会考虑到整个输入序列。这使得RNN在处理自然语言和语音等变长数据时具有优势。如下图所示:

基本循环神经网络结构:一个输入层、一个隐藏层和一个输出层。

x是输入层的值。s表示隐藏层的值,U是输入层到隐藏层的权重矩阵,O是输出层的值。V是隐藏层到输出层的权重矩阵。循环神经网络的隐藏层的值s不仅仅取决于当前这次的输入x,还取决于上一次隐藏层的值s。权重矩阵W就是隐藏层上一次的值作为这一次的输入的权重。

还有就是对nn.RNN和nn.RNNcell 的理解:

nn.RNN是一个多层RNN的实现,它将一系列nn.RNNCell连接在一起。每个nn.RNNCell接受当前输入、上一个隐藏状态和上一个输出作为输入,并输出当前隐藏状态和当前输出。nn.RNNCell是构建单层RNN的基本单元,它封装了RNN的基本运算,使得我们可以方便地构建复杂的RNN结构。

nn.RNN的数据处理方式是将每个时刻的输入数据作为一个独立的样本进行处理。这意味着在向网络中输入一批样本时,每个时刻处理的是该时刻的样本。因此,输入数据的形状为[batch, feature_len],其中batch表示批量大小,feature_len表示特征长度。隐藏状态h的形状是二维的[batch, hidden_len],其中hidden_len是一个可以自定的超参数,表示每个样本的隐藏状态长度。

在nn.RNN中,每个时刻的输入数据x会被线性变换成一个向量,该向量的形状为[hidden_len, feature_len]。这个变换矩阵的形状是[hidden_len, feature_len],它可以通过训练进行学习和优化。

参考文章:

【23-24 秋学期】NNDL 作业9 RNN - SRN-CSDN博客

Seq2Seq 的 PyTorch 实现

《PyTorch深度学习实践》完结合集

### 回答1: nndl-book是指《自然语言处理综述》一书,它是由计算机科学领域的权威学者Christopher Manning和Hinrich Schütze共同编写的一本综述自然语言处理技术的教材。这本书首次出版于1999年,现已有第二版和第三版。nndl-book的内容广泛而深入,涵盖了自然语言处理领域的基础知识和最新进展,包括文本处理、语法分析、语义理解、信息检索、机器翻译等等方面。此外,书中还涉及了许多实用的技术和算法,比如条件随机场、最大熵模型、词向量和深度学习等。nndl-book的读者群体包括学术界和工业界的研究者、开发者和学生,也适合对自然语言处理领域感兴趣的读者学习。总之,nndl-book是自然语言处理领域的一本重要的参考书籍,它为我们深入了解自然语言处理的技术和应用提供了宝贵的指导。 ### 回答2: NNDL-Book是一个著名的Python深度学习库,它是一个开源项目,由加拿大多伦多大学教授Geoffrey Hinton和他的学生Alex Krizhevsky等人创建。NNDL-Book在计算机视觉、自然语言处理和语音识别等领域得到广泛应用,它提供了丰富的神经网络模型和算法,包括卷积神经网络(CNN)、循环神经网络(RNN)和长短时记忆网络(LSTM)等。此外,NNDL-Book还提供了多种数据处理工具和训练技巧,以帮助开发者更高效地构建和训练深度学习模型。总的来说,NNDL-Book是深度学习领域的重要工具之一,对于帮助人们在各种应用场景中实现AI自动化,提高效率和精度都有很大的帮助。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值