转载自AI Studio 项目链接https://aistudio.baidu.com/aistudio/projectdetail/3458536?contributionType=1
基于LSTM自动生成现代诗
项目背景
情因诗而高贵,诗因情而流传。看到现在的古诗生成技术已经炉火纯青,做出的故事真假难辨。但是,身为一名21世纪的青年,我貌似更加喜欢现代诗一点,因为它让人读不懂……好叭,我自己写的也是。
然鹅,自己写的诗篇实在太烂了,真的不好意思拿出手送给自己的npy,于是,正巧最近学习了LSTM模型,于是通过参考诸多大佬的文本生成的相关项目,加上参考了诸多大佬的项目,才有了本项目的诞生。
数据集使用
本项目一共使用了两个数据集。
LSTM模型简介
LSTM是一种非常流行的循环神经网络,相比较于simpleRNN对于较长的句子理解能力较差(因为RNN不加选择地更新ceil state,导致对于前文地信息地丢失),而LSTM通过增加四个逻辑门,有选择地更新ceil state,这使得LSTM对于长文本语义理解上下推断有着更加好地效果。
具体地原理有很多大佬讲过,大家可以看看这份写的相当透彻的Understanding LSTM network。
效果演示
我寄愁心与明月 一棵落落山染来 我沿着一匹回银花的曲子高走短过的那样 我已是那么都在秋天 没有停动地流动一根线儿 一个人在他的身口里 你的手里还在我的身送面指成远 我不成日亮 你不会把彼此装上
我寄愁心与明月。都将别,一回一回,莫问无情何。
无事无人知,无生无与非
模型训练和模型评估
详细的训练流程在参见model_LSTM.ipynb,其中很全面地写了注释和核心思想。
文件组织
- main.ipynb可以直接拿过来玩,自动加载训练好的模型
- model_LSTM.ipynb是训练文件,写了详细的注释,调用它则可以训练自己的模型。
- 【静态图测试】文件夹被废弃了。。。原本打算导出静态图模型但遇到了一点点问题,挖个坑回头解决
- 【models】文件夹存放了不同数量样本训练好的两个模型,可以直接调用
- 【vocab】文件夹存放用于制作词汇表的数据
加载模型进行测试
# 导入相关依赖
from paddle.io import Dataset
import paddle.fluid as fluid
import numpy as np
import paddle
import paddle.nn
from paddlenlp.embeddings import TokenEmbedding
from paddlenlp.data import JiebaTokenizer,Vocab
import visualdl
# 定义超参数
class Config(object):
# version = 'models/version1-modern/version1.pdparams' # 现代诗风格
version = 'models/version2-ancient/version2.pdparams' # 古体诗风格
maxl = 120
filepath = "vocab/poems_without_title.txt"
filepath2 = "vocab/poems_zh.txt"
embedding_dim = 300
hidden_dim = 512
num_layers = 3
max_gen_len = 150
prefix = "爱你一生一世" # 前置风格,可以调整生成文本的风格
beginning = "陪伴是最长情的告白" # 需要给出诗篇的开头,模型进行续写
config = Config()
# 加载词汇表vocab
dic = {'[PAD]':0,'<start>':1,'<end>':2,'[UNK]':3}
cnt=4
with open (config.filepath) as fp:
for line in fp:
for char in line:
if char not in dic:
dic[char] = cnt
cnt+=1
with open (config.filepath2) as fp:
for line in fp:
for char in line:
if char not in dic:
dic[char] = cnt
cnt+=1
vocab = Vocab.from_dict(dic,unk_token='[UNK]')
# 加载模型
class Poetry(paddle.nn.Layer):
def __init__(self,vocab_size,embedding_dim,hidden_dim):
super().__init__()
self.embeddings = paddle.nn.Embedding(vocab_size,embedding_dim)
self.lstm = paddle.nn.LSTM(
input_size=embedding_dim,
hidden_size=hidden_dim,
num_layers=config.num_layers,
)
self.linear = paddle.nn.Linear(in_features=hidden_dim,out_features=vocab_size)
def forward(self,input,hidden=None):
batch_size, seq_len = paddle.shape(input)
embeds = self.embeddings(input)
if hidden is None:
output,hidden = self.lstm(embeds)
else:
output,hidden = self.lstm(embeds,hidden)
output = paddle.reshape(output,[seq_len*batch_size,Config.hidden_dim])
output = self.linear(output)
return output,hidden
poetry = Poetry(len(vocab),config.embedding_dim,config.hidden_dim)
poetry.set_state_dict(paddle.load(config.version))
results = [i for i in config.beginning]
start_words_len = len(results)
input = (paddle.to_tensor(vocab("<start>"))).reshape([1,1])
hidden = None
if config.prefix:
words = [i for i in config.prefix]
for word in words:
_, hidden = poetry(input, hidden)
input = (paddle.to_tensor(vocab(word))).reshape([1,1])
for i in range(config.max_gen_len):
output, hidden = poetry(input, hidden)
if i < start_words_len:
word = results[i]
input = (paddle.to_tensor(vocab(word))).reshape([1,1])
else:
_,top_index = paddle.fluid.layers.topk(output[0],k=1)
top_index = top_index.item()
word = vocab.to_tokens(top_index)
results.append(word)
input = paddle.to_tensor([top_index])
input = paddle.reshape(input,[1,1])
if word == '<end>':
del results[-1]
break
results = ''.join(results)
print(results)
陪伴是最长情的告白 我说着,这么多么多么我的人 我说不用我的爱人 我不敢给你这样的姿态 我会会会在你的胃 我不会把你说这一片 一些小天的影子,你的影子一样一样秋水 一只是,你不可小人。你说不能在你:你证我一杯的我坐 在我的背上望在你头上你的脖子 你说起去
项目总结
- 这是一个关于LSTM模型的一个尝试,其核心是使用LSTM对下一个字进行预测而实现文本生成的目的。从实际表现来看,模型确实学会了一些东西,比如如何使用标点分割句子,如何组织短语,句子的主谓宾该如何分布。
- 考虑到数据集仍然十分小,只有500KB,对于文本生成的任务来说还是太小了,所以任然会出现让人费解的语句。对比来看,在古诗数据集上进行训练的模型更胜一筹(数据集有足足45M),所以增添数据是提升模型的一个途径。
- 现在使用LSTM进行文本生成其实已经是被大佬们玩烂掉的技术,所以要努力学习更加先进的模型啊~
- 这是我的第一个公开项目,希望大家喜欢~