沐神《动手学深度学习》飞桨版注意力评分函数

在10.2节中, 我们使用高斯核来对查询和键之间的关系建模。 我们可以将公式(10.2.6)中的 高斯核指数部分视为注意力评分函数(attention scoring function), 简称评分函数(scoring function), 然后把这个函数的输出结果输入到softmax函数中进行运算。 通过上述步骤,我们将得到与键对应的值的概率分布(即注意力权重)。 最后,注意力汇聚的输出就是基于这些注意力权重的值的加权和。

从宏观来看,我们可以使用上述算法来实现 图10.1.3中的注意力机制框架。图10.3.1说明了 如何将注意力汇聚的输出计算成为值的加权和, 其中aaa表示注意力评分函数。 由于注意力权重是概率分布, 因此加权和其本质上是加权平均值。

图10.3.1 计算注意力汇聚的输出为值的加权和
用数学语言描述,假设有一个查询 q∈Rq\mathbf{q} \in \mathbb{R}^qq∈R
q
和 mmm个“键-值”对 (k1,v1),…,(km,vm)(\mathbf{k}_1, \mathbf{v}_1), \ldots, (\mathbf{k}_m, \mathbf{v}_m)(k
1

,v
1

),…,(k
m

,v
m

), 其中ki∈Rk\mathbf{k}_i \in \mathbb{R}^kk
i

∈R
k
,vi∈Rv\mathbf{v}_i \in \mathbb{R}^vv
i

∈R
v
。 注意力汇聚函数fff就被表示成值的加权和:

f(q,(k1,v1),…,(km,vm))=∑i=1mα(q,ki)vi∈Rv, (10.3.1)f(\mathbf{q}, (\mathbf{k}_1, \mathbf{v}_1), \ldots, (\mathbf{k}_m, \mathbf{v}m)) = \sum{i=1}^m \alpha(\mathbf{q}, \mathbf{k}_i) \mathbf{v}_i \in \mathbb{R}^v,~~~~~~~~~~(10.3.1)
f(q,(k
1

,v
1

),…,(k
m

,v
m

))=
i=1

m

α(q,k
i

)v
i

∈R
v
, (10.3.1)

其中查询q\mathbf{q}q和键ki\mathbf{k}_ik
i

的注意力权重(标量) 是通过注意力评分函数aaa 将两个向量映射成标量, 再经过softmax运算得到的:

α(q,ki)=softmax(a(q,ki))=exp⁡(a(q,ki))∑j=1mexp⁡(a(q,kj))∈R. (10.3.2)\alpha(\mathbf{q}, \mathbf{k}_i) = \mathrm{softmax}(a(\mathbf{q}, \mathbf{k}_i)) = \frac{\exp(a(\mathbf{q}, \mathbf{k}i))}{\sum{j=1}^m \exp(a(\mathbf{q}, \mathbf{k}_j))} \in \mathbb{R}.~~~~~~~~~~(10.3.2)
α(q,k
i

)=softmax(a(q,k
i

))=

j=1
m

exp(a(q,k
j

))
exp(a(q,k
i

))

∈R. (10.3.2)

正如我们所看到的,选择不同的注意力评分函数aaa会导致不同的注意力汇聚操作。 在本节中,我们将介绍两个流行的评分函数,稍后将用他们来实现更复杂的注意力机制。

In [2]
import math
import paddle
from paddle import nn
from d2l import paddle as d2l
---------------------------------------------------------------------------ModuleNotFoundError Traceback (most recent call last)/tmp/ipykernel_98/4114844242.py in 2 import paddle 3 from paddle import nn ----> 4 from d2l import paddle as d2l ModuleNotFoundError: No module named ‘d2l’
[掩蔽softmax操作]
正如上面提到的,softmax操作用于输出一个概率分布作为注意力权重。 在某些情况下,并非所有的值都应该被纳入到注意力汇聚中。 例如,为了在9.5节中高效处理小批量数据集, 某些文本序列被填充了没有意义的特殊词元。 为了仅将有意义的词元作为值来获取注意力汇聚, 我们可以指定一个有效序列长度(即词元的个数), 以便在计算softmax时过滤掉超出指定范围的位置。 通过这种方式,我们可以在下面的masked_softmax函数中 实现这样的掩蔽softmax操作(masked softmax operation), 其中任何超出有效长度的位置都被掩蔽并置为0。

In [ ]
#@save
def masked_softmax(X, valid_lens):
“”“通过在最后一个轴上掩蔽元素来执行softmax操作”“”
# X:3D张量,valid_lens:1D或2D张量
if valid_lens is None:
return nn.functional.softmax(X, axis=-1)
else:
shape = X.shape
if valid_lens.dim() == 1:
valid_lens = paddle.tile(valid_lens.reshape((valid_lens.shape[0], -1)), [shape[1]]).reshape((-1,))
else:
valid_lens = valid_lens.reshape((-1,))
# # 最后一轴上被掩蔽的元素使用一个非常大的负值替换,从而其softmax输出为0
X = d2l.sequence_mask(X.reshape((-1, shape[-1])), valid_lens,
value=-1e6)
return nn.functional.softmax(X.reshape(shape), axis=-1)
为了[演示此函数是如何工作]的, 考虑由两个2×42 \times 42×4矩阵表示的样本, 这两个样本的有效长度分别为222和333。 经过掩蔽softmax操作,超出有效长度的值都被掩蔽为0。

In [ ]
masked_softmax(paddle.rand((2, 2, 4)), paddle.to_tensor([2, 3]))
同样,我们也可以使用二维张量,为矩阵样本中的每一行指定有效长度。

In [ ]
masked_softmax(paddle.rand((2, 2, 4)), paddle.to_tensor([[1, 3], [2, 4]]))
[加性注意力]
一般来说,当查询和键是不同长度的矢量时, 我们可以使用加性注意力作为评分函数。 给定查询q∈Rq\mathbf{q} \in \mathbb{R}^qq∈R
q
和 键k∈Rk\mathbf{k} \in \mathbb{R}^kk∈R
k
, 加性注意力(additive attention)的评分函数为

a(q,k)=wv⊤tanh(Wqq+Wkk)∈R, (10.3.3)a(\mathbf q, \mathbf k) = \mathbf w_v^\top \text{tanh}(\mathbf W_q\mathbf q + \mathbf W_k \mathbf k) \in \mathbb{R},~~~~~~~~~~(10.3.3)
a(q,k)=w
v


tanh(W
q

q+W
k

k)∈R, (10.3.3)

其中可学习的参数是Wq∈Rh×q\mathbf W_q\in\mathbb R^{h\times q}W
q

∈R
h×q
、 Wk∈Rh×k\mathbf W_k\in\mathbb R^{h\times k}W
k

∈R
h×k
和 wv∈Rh\mathbf w_v\in\mathbb R^{h}w
v

∈R
h
。 如公式(10.3.3)所示, 将查询和键连结起来后输入到一个多层感知机(MLP)中, 感知机包含一个隐藏层,其隐藏单元数是一个超参数hhh。 通过使用tanh⁡\tanhtanh作为激活函数,并且禁用偏置项。

下面我们来实现加性注意力。

In [ ]
#@save
class AdditiveAttention(nn.Layer):
“”“加性注意力”“”
def init(self, key_size, query_size, num_hiddens, dropout, **kwargs):
super(AdditiveAttention, self).init(**kwargs)
self.W_k = nn.Linear(key_size, num_hiddens, bias_attr=False)
self.W_q = nn.Linear(query_size, num_hiddens, bias_attr=False)
self.w_v = nn.Linear(num_hiddens, 1, bias_attr=False)
self.dropout = nn.Dropout(dropout)

def forward(self, queries, keys, values, valid_lens):
    queries, keys = self.W_q(queries), self.W_k(keys)
    # 在维度扩展后,
    # queries的形状:(batch_size,查询的个数,1,num_hidden)
    # key的形状:(batch_size,1,“键-值”对的个数,num_hiddens)
    # 使用广播方式进行求和
    features = queries.unsqueeze(2) + keys.unsqueeze(1)
    features = paddle.tanh(features)
    # self.w_v仅有一个输出,因此从形状中移除最后那个维度。
    # scores的形状:(batch_size,查询的个数,“键-值”对的个数)
    scores = self.w_v(features).squeeze(-1)
    self.attention_weights = masked_softmax(scores, valid_lens)
    # values的形状:(batch_size,“键-值”对的个数,值的维度)
    return paddle.bmm(self.dropout(self.attention_weights), values)

我们用一个小例子来[演示上面的AdditiveAttention类], 其中查询、键和值的形状为(批量大小,步数或词元序列长度,特征大小), 实际输出为(2,1,20)(2,1,20)(2,1,20)、(2,10,2)(2,10,2)(2,10,2)和(2,10,4)(2,10,4)(2,10,4)。 注意力汇聚输出的形状为(批量大小,查询的步数,值的维度)。

In [ ]
queries, keys = paddle.normal(0, 1, (2, 1, 20)), paddle.ones((2, 10, 2))

values的小批量,两个值矩阵是相同的

values = paddle.arange(40, dtype=paddle.float32).reshape((1, 10, 4)).tile(
[2, 1, 1])
valid_lens = paddle.to_tensor([2, 6])

attention = AdditiveAttention(key_size=2, query_size=20, num_hiddens=8,
dropout=0.1)
attention.eval()
attention(queries, keys, values, valid_lens)
尽管加性注意力包含了可学习的参数,但由于本例子中每个键都是相同的, 所以[注意力权重]是均匀的,由指定的有效长度决定。

In [ ]
d2l.show_heatmaps(attention.attention_weights.reshape((1, 1, 2, 10)),
xlabel=‘Keys’, ylabel=‘Queries’)
[缩放点积注意力]
使用点积可以得到计算效率更高的评分函数, 但是点积操作要求查询和键具有相同的长度ddd。 假设查询和键的所有元素都是独立的随机变量, 并且都满足零均值和单位方差, 那么两个向量的点积的均值为000,方差为ddd。 为确保无论向量长度如何, 点积的方差在不考虑向量长度的情况下仍然是111, 我们将点积除以d\sqrt{d}
d

, 则缩放点积注意力(scaled dot-product attention)评分函数为:

a(q,k)=q⊤k/d. (10.3.4)a(\mathbf q, \mathbf k) = \mathbf{q}^\top \mathbf{k} /\sqrt{d}.~~~~~~~~~~(10.3.4)
a(q,k)=q

k/
d

. (10.3.4)

在实践中,我们通常从小批量的角度来考虑提高效率, 例如基于nnn个查询和mmm个键-值对计算注意力, 其中查询和键的长度为ddd,值的长度为vvv。 查询Q∈Rn×d\mathbf Q\in\mathbb R^{n\times d}Q∈R
n×d
、 键K∈Rm×d\mathbf K\in\mathbb R^{m\times d}K∈R
m×d
和 值V∈Rm×v\mathbf V\in\mathbb R^{m\times v}V∈R
m×v
的缩放点积注意力是:

softmax(QK⊤d)V∈Rn×v. (10.3.5)\mathrm{softmax}\left(\frac{\mathbf Q \mathbf K^\top }{\sqrt{d}}\right) \mathbf V \in \mathbb{R}^{n\times v}.~~~~~~~~~~(10.3.5)
softmax(
d

QK


)V∈R
n×v
. (10.3.5)

在下面的缩放点积注意力的实现中,我们使用了暂退法进行模型正则化。

In [ ]
#@save
class DotProductAttention(nn.Layer):
“”“缩放点积注意力”“”
def init(self, dropout, **kwargs):
super(DotProductAttention, self).init(**kwargs)
self.dropout = nn.Dropout(dropout)

# queries的形状:(batch_size,查询的个数,d)
# keys的形状:(batch_size,“键-值”对的个数,d)
# values的形状:(batch_size,“键-值”对的个数,值的维度)
# valid_lens的形状:(batch_size,)或者(batch_size,查询的个数)
def forward(self, queries, keys, values, valid_lens=None):
    d = queries.shape[-1]
    # 设置transpose_b=True为了交换keys的最后两个维度
    scores = paddle.bmm(queries, keys.transpose((0,2,1))) / math.sqrt(d)
    self.attention_weights = masked_softmax(scores, valid_lens)
    return paddle.bmm(self.dropout(self.attention_weights), values)

为了[演示上述的DotProductAttention类], 我们使用与先前加性注意力例子中相同的键、值和有效长度。 对于点积操作,我们令查询的特征维度与键的特征维度大小相同。

In [ ]
queries = paddle.normal(0, 1, (2, 1, 2))
attention = DotProductAttention(dropout=0.5)
attention.eval()
attention(queries, keys, values, valid_lens)
与加性注意力演示相同,由于键包含的是相同的元素, 而这些元素无法通过任何查询进行区分,因此获得了[均匀的注意力权重]。

In [ ]
d2l.show_heatmaps(attention.attention_weights.reshape((1, 1, 2, 10)),
xlabel=‘Keys’, ylabel=‘Queries’)
小结
将注意力汇聚的输出计算可以作为值的加权平均,选择不同的注意力评分函数会带来不同的注意力汇聚操作。
当查询和键是不同长度的矢量时,可以使用可加性注意力评分函数。当它们的长度相同时,使用缩放的“点-积”注意力评分函数的计算效率更高。
练习
修改小例子中的键,并且可视化注意力权重。可加性注意力和缩放的“点-积”注意力是否仍然产生相同的结果?为什么?
只使用矩阵乘法,你能否为具有不同矢量长度的查询和键设计新的评分函数?
当查询和键具有相同的矢量长度时,矢量求和作为评分函数是否比“点-积”更好?为什么?
如果想系统性学习该项目,可前往“动手学AI”课程(https://aistudio.baidu.com/aistudio/course/introduce/25851)查看完整章节

Discussions

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值