1005 继续(3n+1)猜想

2024年2月24日

卡拉兹(Callatz)猜想已经在1001中给出了描述。在这个题目里,情况稍微有些复杂。

当我们验证卡拉兹猜想的时候,为了避免重复计算,可以记录下递推过程中遇到的每一个数。例如对 n=3 进行验证的时候,我们需要计算 3、5、8、4、2、1,则当我们对 n=5、8、4、2 进行验证的时候,就可以直接判定卡拉兹猜想的真伪,而不需要重复计算,因为这 4 个数已经在验证3的时候遇到过了,我们称 5、8、4、2 是被 3“覆盖”的数。我们称一个数列中的某个数 n 为“关键数”,如果 n 不能被数列中的其他数字所覆盖。

现在给定一系列待验证的数字,我们只需要验证其中的几个关键数,就可以不必再重复验证余下的数字。你的任务就是找出这些关键数字,并按从大到小的顺序输出它们。

输入格式:

每个测试输入包含 1 个测试用例,第 1 行给出一个正整数 K (<100),第 2 行给出 K 个互不相同的待验证的正整数 n (1<n≤100)的值,数字间用空格隔开。

输出格式:

每个测试用例的输出占一行,按从大到小的顺序输出关键数字。数字间用 1 个空格隔开,但一行中最后一个数字后没有空格。

输入样例:

6
3 5 6 7 8 11

输出样例:

7 6

/*
题目初解:
题目给定一个数列,要找出其中的关键数,关键数指卡拉兹猜想中
能够覆盖数列中其他数而自己不被覆盖的数
比如一下数列:
3 5 6 7 8 11
演示一下变为1的过程:
3->5->8->4->2->1
5->8->4->2->1;
6->3->5->8->4->2->1
7->11->17->26->13->20->10->5->8->4->2->1
8->4->2->1;
11->17->26->13->20->10->5->8->4->2->1
那么我们可以发现3之后是5,也就是5是被3覆盖的数;那么我们怎么
在给定的数列中体现覆盖呢,如果3覆盖了5,那么其实5后面的8421
这一系列的数也是被覆盖的,我们可以将被覆盖的数设置为失效,也就
是非关键数可以不用保留,可以将他设置为0或是负数,比如:
3 5 6 7 8 11
我们知道了3的下一个数是5,我们在数组中找是否含有5这个数,发现下一个
也就是5,5就确定不是关键数;于是新数组:
3 0 6 7 8 11 
然后3经过5的下一步是8,再在数组中寻找是否可以被覆盖的8,遍历发现有8
于是进行覆盖,新数组:
3 0 6 7 0 11
我们从第一个数开始,再他变为1的过程中用当前的数去数组中查看是否有能被
覆盖的数,如果有则进行覆盖,最后留下的也就是关键数。
然后留下的数进行排序然后输出即可;这里给定的数是不会有重复的数的.
*/
#include<iostream>
using namespace std;
int main(){
    int K;
    cin>>K;    //输入数字个数;
    int Data[K];
    for(int i=0;i<K;i++){
        cin>>Data[i];    //输入每个数字;
    }
    //逐个数进行卡拉兹操作,用当前获得的数检查数组中是否有可覆盖的数;
    int x=0;    //x赋值为当前操作数,避免更改数据;
    for(int i=0;i<K;i++){    //第一层循环时是每个数都要进行操作;
        x=Data[i];    //将Data中的值赋值给x;
        if(x){        //这里被覆盖的数不用参加循环;
            while(x!=1){        //这层循环是当前x变为1的操作;
                if(x%2==0){
                    x/=2;    //x为偶数;
                }
                else if(x%2==1){
                    x=(3*x+1)/2;    //x为奇数的情况;
                }
                for(int j=0;j<K;j++){    //这层循环去检查数组是否有可被覆盖的数;
                    if(Data[j]==x){
                        Data[j]=0;        //覆盖操作,将被覆盖的数置零;
                        break;
                    }
                }
            }
        }
    }
    /*
    //将覆盖之后的数组进行排序;
    int exchange=0;    //存放交换过程中其中一个数;
    for(int i=0;i<K;i++){
        for(int j=0;j<K-1;j++){
            if(Data[j]<Data[j+1]){
                exchange=Data[j];
                Data[j]=Data[j+1];
                Data[j+1]=exchange;
            }
        }
    }
    */
    //找出关键数;
    int count=0;    //记录关键数数量;
    for(int i=0;i<K;i++){
        //第一步数个数;
        if(Data[i]!=0){count++;}
    }
    //建立小数组并排序;
    int key[count];
    int j=0;
    for(int i=0;i<K;i++){
        if(Data[i]!=0){
            key[j++]=Data[i];
        }
    }
    //排序;
    int exchange=0;
    for(int i=0;i<count;i++){
        for(int k=0;k<count-1;k++){
            if(key[k]<key[k+1]){
                exchange=key[k];
                key[k]=key[k+1];
                key[k+1]=exchange;
            }
        }
    }
    //输出;
    for(int i=0;i<count-1;i++){    //这里最后一个数字没有空格,最后一个关键数后面是0或者没有数字(比如数列6 7)
        cout<<key[i]<<" ";
    }
    cout<<key[count-1];
    return 0;
}
/*
解题反思:
本题一共运行了两次超时,在三重循环也就是卡拉兹检验这一部分,时间复杂度是在n*n*n的,我以为K不超过
100是不会超时的,但是幂函数确实非常的厉害,很容易就超时了,我刚开始写的排序也是整个排序,后面就找
数出来排序,然后就是被覆盖的数不需要在进行卡拉兹验证,若x==0,这里陷入了死循环,导致运行超时.
*/

  • 10
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 以下是C++代码: #include <iostream> using namespace std; int main() { int n; cin >> n; while (n != 1) { cout << n << " "; if (n % 2 == ) { n /= 2; } else { n = 3 * n + 1; } } cout << n << endl; return ; } 这段代码实现了“3n+1猜想”,输入一个正整数n,如果n是偶数,则将n除以2,否则将n乘以3再加1,直到n等于1为止。在每次操作后输出n的值。 ### 回答2: 题目描述:1005 继续(3n+1)猜想 这道题目让我们去思考著名的“3n+1”猜想,也称为“Collatz猜想”。所谓“3n+1”猜想,就是对于任意一个正整数n,若n为奇数,则将n变为3n+1,若n为偶数,则将n变为n/2。重复这个过程,最终都会得到1,也就是说,任何一个正整数都可以通过不停地进行“3n+1”的变化,最终得到1。 但是,不管从理论还是实际的考虑,都没有证明这个猜想成立。虽然经过无数次的尝试,这个猜想在极大程度上看来确实是正确的,但是人们还是无法确切地证明其正确性。 对于这个问题,我个人认为,我们可以从数学的角度来对其进行分析。首先,对于任何一个正整数n,我们都可以进行以下两种操作: ①.若n为奇数,则将n变为3n+1; ②.若n为偶数,则将n变为n/2。 我们可以通过考虑这两种操作对应的函数,进行进一步的分析。定义函数f(n)为将n变为3n+1的操作所得到的结果,函数g(n)为将n变为n/2的操作所得到的结果。不难发现,对于任何一个正整数n,我们都可以得到: ①.当n为奇数时,f(n)=3n+1为偶数,进而有g(f(n))=g(3n+1)=(3n+1)/2; ②.当n为偶数时,g(n)=n/2为偶数,进而有g(g(n))=g(n/2)=n/4。 综合以上两种情况,我们可以得到一个结论:如果不断地将n带入这两个函数中,最终都可以得到1。 但是,这个证明还不够严谨。比较困难的地方在于,我们无法排除一些特殊的数,其值会不停地循环,从而使得证明过程无法进行下去。针对这个问题,目前仍然没有有效的解决方法。因此,“3n+1”猜想依旧是未解决的数学难题之一。 不管怎样,这个猜想之所以引起人们无尽的探讨,主要还是因为它本身就涉及到了数学的深层次问题,不仅涉及到数论、代数学、纯粹数学等方面,还涉及到了计算机科学、信息论等实际应用领域。相信随着数学理论的不断发展,我们终将会对这个猜想有一个更加深刻的认识。 ### 回答3: 3n+1猜想是指:对于任意正整数n,如果n是偶数,则把它除以2,如果n是奇数,则把它乘以3再加1。得到的结果再按照同样的规则进行操作,直到最终得到1。据说,无论最初的n是什么,最终都会得到1,这就是3n+1猜想。 那么,问题来了,我们应该如何证明这个猜想呢?事实上,迄今为止,没有人能够证明这个猜想的正确性,也没有人能够找到反例来证明它的错误性。 针对这个猜想的研究早在20世纪初就已经开始了,但是至今仍然没有找到确凿的证据来证明它的正确性。有一些数学学者通过计算机模拟,发现对于n<268,可以得到1,这些数被称为3n+1问题的朴素范围,有些学者认为对于n的所有值都是成立的。 虽然没有找到真正的证据,但是3n+1猜想已经被广泛接受,并成为了数学上的一个有名的问题,它的重要性在于它为数学提供了一种新的、有趣的思考方式。通过研究这个问题,我们可以深入了解自然数的性质和规律,也可以得到更多的启示。因此,无论是从学术的角度还是从趣味的角度,3n+1猜想都是值得我们探索的问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值