Python:1005 继续(3n+1)猜想

一、题目

卡拉兹(Callatz)猜想已经在1001中给出了描述。在这个题目里,情况稍微有些复杂。

当我们验证卡拉兹猜想的时候,为了避免重复计算,可以记录下递推过程中遇到的每一个数。例如对 n=3 进行验证的时候,我们需要计算 3、5、8、4、2、1,则当我们对 n=5、8、4、2 进行验证的时候,就可以直接判定卡拉兹猜想的真伪,而不需要重复计算,因为这 4 个数已经在验证3的时候遇到过了,我们称 5、8、4、2 是被 3“覆盖”的数。我们称一个数列中的某个数 n 为“关键数”,如果 n 不能被数列中的其他数字所覆盖。

现在给定一系列待验证的数字,我们只需要验证其中的几个关键数,就可以不必再重复验证余下的数字。你的任务就是找出这些关键数字,并按从大到小的顺序输出它们。

输入格式:
每个测试输入包含 1 个测试用例,第 1 行给出一个正整数 K (<100),第 2 行给出 K 个互不相同的待验证的正整数 n (1<n≤100)的值,数字间用空格隔开。

输出格式:
每个测试用例的输出占一行,按从大到小的顺序输出关键数字。数字间用 1 个空格隔开,但一行中最后一个数字后没有空格。

二、代码

思想
这个题不难,用 Python 写的话,其实 n 也就是输入测试用例的个数没啥用,但是为了保持格式,你还要写

用到了,输入数据空格隔开,将其转换为列表的知识

sort 函数没有返回值,直接操作源列表需要注意

对于输出要求中,最后一个数字没有空格,需要注意处理

n = int(input())
parm = list(map(int,input().split()))
data = []
result = []
for temp in parm:
    while temp !=1:
        if temp%2 ==0:
            temp = int(temp/2)
            if temp not in data:
                data.append(temp)
        else:
            temp = 3*temp +1
            temp = int(temp/2)
            if temp not in data:
                data.append(temp)
parm.sort(reverse=True)
for i in parm:
    if i not in data:
        result.append(i)
i = 0
while i < len(result)-1:
    print(result[i],end=' ')
    i = i+1
print(result[i])
### 回答1: 您好,以下是关于“3n+1猜想”的Python代码: def three_n_plus_one(n): count = 1 while n != 1: if n % 2 == : n = n // 2 else: n = 3 * n + 1 count += 1 return count max_count = max_num = for i in range(1, 100000): count = three_n_plus_one(i) if count > max_count: max_count = count max_num = i print("最长序列的起始数是:", max_num) print("最长序列的长度是:", max_count) 这个程序可以计算从1到100000中,哪个数的3n+1序列最长,并输出该序列的长度和起始数。希望对您有所帮助! ### 回答2: 3n+1猜想,又称Collatz猜想,是指任取一个正整数n,若n为奇数则将其变为3n+1,若n为偶数则将其变为n/2,如此反复进行,最终一定会得到1。这一猜想虽然很简单,但至今尚未被数学家们证明或者反驳。在本题中,我们需要使用Python语言编写一个程序,输入一个正整数n,输出按照3n+1猜想所得到的数列。 首先,我们需要用input()函数获取一个正整数n,这可以用int()函数将输入的字符串转换为整数,代码如下: n = int(input()) 接下来,我们需要使用while循环来实现按照3n+1猜想所得到的数列。在循环中,首先我们需要判断当前的n是否等于1,如果是则退出循环;如果不是,则根据n的奇偶性分别执行3n+1或n/2操作,并将结果赋值给n,最后输出n的值。具体代码如下: while n != 1: # 当n不等于1时循环执行 if n % 2 == 0: # 当n为偶数时 n = n // 2 # 执行n/2操作 else: # 当n为奇数时 n = 3 * n + 1 # 执行3n+1操作 print(n) # 输出n的值 最后,我们将以上代码整合在一起,即可得到完整的程序,如下所示: n = int(input()) while n != 1: if n % 2 == 0: n = n // 2 else: n = 3 * n + 1 print(n) 通过以上程序,我们可以输入任意一个正整数n,得到按照3n+1猜想所得到的数列,进一步探索这一著名的数学问题,也可以加深对于Python编程语言的理解。 ### 回答3: 3n+1猜想又称为Collatz猜想,是指对于任何一个自然数n,如果n是偶数,就把它除以2,变成n/2;如果n是奇数,就把它乘以3再加1,变成3n+1。按照这样的规律迭代操作下去,最终一定会得到1。这个猜想本身很简单,但是其数学证明却备受关注。 我使用Python编写了一个能够验证猜想的代码: def collatz(n): print(n) if n == 1: return elif n % 2 == 0: collatz(n // 2) else: collatz(3 * n + 1) n = int(input("请输入一个正整数:")) collatz(n) 这个代码中,我们首先通过input函数接受用户输入的一个正整数,然后通过collatz函数来进行猜想的验证。如果n等于1,那么我们就退出程序,因为该数已经被验证完成;否则,我们判断该数是奇数还是偶数,然后对其进行相应的操作。 使用这个代码,我们可以轻易地验证任何一个正整数是否能够达到1。虽然Collatz猜想仍然没有被数学证明,但是通过这个代码,我们可以对这个猜想有一个更加深刻的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

南淮北安

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值