算法通关村——栈的经典算法问题

本文介绍了如何使用编程解决LeetCode上的三个问题:括号匹配问题,通过辅助栈实现最小值查找;最小栈,支持常数时间检索最小元素;以及最大栈,支持popMax操作获取栈中的最大值。
摘要由CSDN通过智能技术生成

目录

1. 括号匹配问题

2. 最小栈

3. 最大栈


1. 括号匹配问题

力扣(LeetCode)20.有效的括号

给定一个只包括 '('')''{''}''['']' 的字符串 s ,判断字符串是否有效。

有效字符串需满足:

  1. 左括号必须用相同类型的右括号闭合。
  2. 左括号必须以正确的顺序闭合。
  3. 每个右括号都有一个对应的相同类型的左括号。
示例 1:

输入:s = "()"
输出:true
示例 2:

输入:s = "()[]{}"
输出:true
示例 3:

输入:s = "(]"
输出:false

可以利用Map将所有符号全部先保存,左半边作key,右半边作value。在遍历字符串的时候,遇到左半符号就入栈,遇到右半符号就取栈顶元素作比,不匹配就返回false。

public boolean isValid_My(String s) {
        if (s.length()<=1){
            return false;
        }
        Map<Character,Character> map=new HashMap<>();
        map.put('(',')');
        map.put('{','}');
        map.put('[',']');
        Stack<Character> stack=new Stack<>();
        for (int i = 0; i < s.length(); i++) {
            char item=s.charAt(i);
            if (map.containsKey(item)){
                stack.push(item);
            }else {
                if (!stack.isEmpty()){
                    char left=stack.pop();
                    if (map.get(left)!=item){
                        return false;
                    }
                }else return false;
            }
        }
        return stack.isEmpty();//当栈为空时,返回true,说明正好全部匹配
    }

2. 最小栈

力扣(LeetCode)155.最小栈

设计一个支持 push ,pop ,top 操作,并能在常数时间内检索到最小元素的栈。

实现 MinStack 类:

  • MinStack() 初始化堆栈对象。
  • void push(int val) 将元素val推入堆栈。
  • void pop() 删除堆栈顶部的元素。
  • int top() 获取堆栈顶部的元素。
  • int getMin() 获取堆栈中的最小元素。
示例 :

输入:
["MinStack","push","push","push","getMin","pop","top","getMin"]
[[],[-2],[0],[-3],[],[],[],[]]

输出:
[null,null,null,null,-3,null,0,-2]

解释:
MinStack minStack = new MinStack();
minStack.push(-2);
minStack.push(0);
minStack.push(-3);
minStack.getMin();   --> 返回 -3.
minStack.pop();
minStack.top();      --> 返回 0.
minStack.getMin();   --> 返回 -2

如上图,第一个图是元素入栈时的实际的图,第二个是我们设计的辅助栈,本题的关键是取出栈中的最小值,此时可以设计一个辅助栈,和正常入栈时同步插入和删除,用于存储当前元素入栈后栈内的最小值。

  • 当一个元素要入栈时,我们取当前辅助栈的栈顶的最小值,与当前元素比较得出最小值,将最小值插入辅助栈中;
  • 当一个元素要出栈时,我们将辅助栈的栈顶元素也一并弹出。
  • 在任意一个时刻,栈内元素的最小值就存储在辅助栈的栈顶元素中。
class MinStack {
    Deque<Integer> xStack;
    Deque<Integer> minStack;

    public MinStack() {
        xStack = new LinkedList<Integer>();
        minStack = new LinkedList<Integer>();
        minStack.push(Integer.MAX_VALUE);
    }

    public void push(int x) {
        xStack.push(x);
        minStack.push(Math.min(minStack.peek(), x));
    }

    public void pop() {
        xStack.pop();
        minStack.pop();
    }

    public int top() {
        return xStack.peek();
    }

    public int getMin() {
        return minStack.peek();
    }

}

3. 最大栈

力扣(LeetCode)716.最大栈

与上一个题目相反,但处理思路时一样的。但其中的popMax()有点例外,popMax()的意思是要取出当前栈中的最大值,由于我们都知道当前栈中的最大元素值,因此可以直接将两个栈同时出栈,并存储第一个栈出栈的所有值,当某个时刻,第一个栈的出栈元素等于当前栈中最大的元素值时,就找到了最大的元素,因此我们将之前出第一个栈的所有元素重新入栈,并同步更新第二个栈,就完成了popMax()操作。

class MaxStack {
    Stack<Integer> stack;
    Stack<Integer> maxStack;

    public MaxStack() {
        stack = new Stack();
        maxStack = new Stack();
    }

    public void push(int x) {
        int max = maxStack.isEmpty() ? x : maxStack.peek();
        maxStack.push(max > x ? max : x);
        stack.push(x);
    }

    public int pop() {
        maxStack.pop();
        return stack.pop();
    }

    public int top() {
        return stack.peek();
    }

    public int peekMax() {
        return maxStack.peek();
    }

    public int popMax() {
        int max = peekMax();
        Stack<Integer> buffer = new Stack();
        while (top() != max) buffer.push(pop());
        pop();
        while (!buffer.isEmpty()) push(buffer.pop());
        return max;
    }
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值