1. 计算器问题
给你一个字符串表达式 s
,请你实现一个基本计算器来计算并返回它的值。
整数除法仅保留整数部分。
你可以假设给定的表达式总是有效的。所有中间结果将在 [-231, 231 - 1]
的范围内。
注意:不允许使用任何将字符串作为数学表达式计算的内置函数,比如 eval()
。
示例 1:
输入:s = "3+2*2"
输出:7
示例 2:
输入:s = " 3/2 "
输出:1
示例 3:
输入:s = " 3+5 / 2 "
输出:5
解决计算器问题最好的工具就是栈,先将数字获取出来,压入栈中,如果是加法,就直接压入栈,是减法就将数字的相反数压入栈,是乘除就将当前的数字和栈顶元素计算后再压入栈中,所以这里最大的一个关键点就是乘除号前一个数字在栈中,而后一个元素还未入栈,所以需要一个变量preSign记录每个数字之前的运算符,对于第一个数字,就将它前面的运算符视为加号,每次遍历到数字末尾时,根据preSign来决定计算方式。而读到一个运算符或遍历到字符串末尾,即认为是遍历到到了数字末尾。
遍历完字符串后,将栈中元素累加,即为字符串表达式的值。
public static int calculate_My(String s) {
char preSign='+';
Deque<Integer> stack = new ArrayDeque<Integer>();
int n=s.length();
int num=0;
for (int i = 0; i < n; i++) {
if (Character.isDigit(s.charAt(i))){
num=num*10+s.charAt(i)-'0';
}
if (!Character.isDigit(s.charAt(i))&&s.charAt(i)!=' '||i==n-1){
switch (preSign){//preSign记录的是每个数字前一个运算符,只有当数字前是乘除号时才会进行运算,此时的num是运算符后一个数字
case '+':stack.push(num);break;
case '-':stack.push(-num);break;
case '*':stack.push(stack.pop()*num);break;
default:stack.push(stack.pop()/num);break;
}
preSign=s.charAt(i);//因为只有当s.charAt(i)为运算符或最后一位时才会进入,所以要更新运算符
num=0;
}
}
int sum=0;
while (!stack.isEmpty()){
sum+=stack.pop();
}
return sum;
}
2. 逆波兰表达式
给你一个字符串数组 tokens
,表示一个根据 逆波兰表示法 表示的算术表达式。
请你计算该表达式。返回一个表示表达式值的整数。
注意:
- 有效的算符为
'+'
、'-'
、'*'
和'/'
。 - 每个操作数(运算对象)都可以是一个整数或者另一个表达式。
- 两个整数之间的除法总是 向零截断 。
- 表达式中不含除零运算。
- 输入是一个根据逆波兰表示法表示的算术表达式。
- 答案及所有中间计算结果可以用 32 位 整数表示。
示例 1:
输入:tokens = ["2","1","+","3","*"]
输出:9
解释:该算式转化为常见的中缀算术表达式为:((2 + 1) * 3) = 9
示例 2:
输入:tokens = ["4","13","5","/","+"]
输出:6
解释:该算式转化为常见的中缀算术表达式为:(4 + (13 / 5)) = 6
首先先要明白一点,逆波兰表达式是什么,说白了波兰表达式是前缀表达式,又被称为前缀记法或波兰式,所以后缀式就是逆波兰式。后缀表达式或者说逆波兰表达式的特点就是将数字先保存下来,然后遇到符号就计算,例如 ” 2 3 + “ 就是2+3 加起来变成5再继续其他操作。
用栈来解决的思路就是遇见数字就进栈,遇见运算符,就取出栈中最上面的两个元素进行计算,最后将运算结果入栈。
public static int evalRPN(String[] tokens) {
Stack<Integer> stack = new Stack<>();
for (String token : tokens) {
if (!Character.isDigit(token.charAt(0)) && token.length() == 1) {
/**
* 运算符,从栈中取出两个数进行运算!
*/
int b = stack.pop();
int a = stack.pop();
switch (token) {
/**
* 根据运算符的种类进行计算
* 将结果直接入栈!
*/
case "+":
stack.push(a + b);
break;
case "-":
stack.push(a - b);
break;
case "*":
stack.push(a * b);
break;
case "/":
stack.push(a / b);
break;
}
} else {
/**
* 整数直接入栈!
*/
stack.push(Integer.parseInt(token));
}
}
return stack.pop();
}