Opencv检测人脸、眼睛、嘴巴

1.原理

Haar(哈尔)级联:在进行图像分类和跟踪过程中,提取图像的细节很有用,这些细节也被称为特征,对于给定的图像,特征可能会因区域的大小而有所不同,区域大小也可被称为窗口大小。即使窗口大小不同,仅在尺度上大小不同的图像也应该有相似的特征。这种特征集合被称为级联。Haar 级联具有尺度不变性。OpenCV 提供了尺度不变Haar 级联的分类器和跟踪器。
2.

Haar(哈尔)级联训练模型

在下载Opencv的过程中,OpnCV 原代码副本文件提供了OpenCV 人脸检测所需的XML文件

一般在此路径下,也可以到官网下载

"D:\Python\Lib\site-packages\cv2\data\haarcascade_frontalface_alt_tree.xml"

3.首先导入opencv库

import cv2

4.加载xml文件

detector=cv2.CascadeClassifier(r'D:\Python\Lib\sitepackages\cv2\data\haarcascade_frontalface_default.xml')
eye_cascade=cv2.CascadeClassifier(r"D:\Python\Lib\sitepackages\cv2\data\haarcascade_eye_tree_eyeglasses.xml")
mouth=cv2.CascadeClassifier(r"D:\Python\Lib\sitepackages\cv2\data\haarcascade_smile.xml")
cap=cv2.VideoCapture(0)#打开摄像头

5.进行检测

while cap.isOpened():
    ret,img=cap.read()
    gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    faces=detector.detectMultiScale(gray,minSize=(100,100),flags=cv2.CASCADE_SCALE_IMAGE)

    for (x,y,w,h) in faces:

        cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)

        roi_gray = gray[y:y + h, x:x + w]
        roi_color = img[y:y + h, x:x + w]
        # cv2.imshow('roi_gray',roi_gray)
        cv2.imshow('roi_color', roi_color)
        cv2.putText(img, 'dog_face', (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (255, 0, 0), 2)
        eyes = eye_cascade.detectMultiScale(roi_gray, minSize=(100, 100), flags=cv2.CASCADE_SCALE_IMAGE)
        mouths = mouth.detectMultiScale(roi_gray, minSize=(100, 100), flags=cv2.CASCADE_SCALE_IMAGE)
        for (ex, ey, ew, eh) in eyes:
            cv2.rectangle(roi_color, (ex, ey), (ex + ew, ey + eh), (0, 255, 0), 2)

            cv2.putText(img,'eye',(ex,ey-1),cv2.FONT_HERSHEY_SIMPLEX,0.75,(0,0,255),2)
        for (mx,my,mw,mh) in mouths:
            cv2.rectangle(roi_color, (mx, my), (mx + mw, my + mh), (0, 255, 0), 2)

            cv2.putText(img, 'mouth', (mx+100, my+100), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 0, 255), 2)
    cv2.imshow('frame', img)
    if cv2.waitKey(5) & 0xFF == ord('q'):
        break
cap.release()
cv2.destroyAllWindows()

6.完整代码如下

'''opencv检测人脸,双眼,嘴'''

import cv2
detector=cv2.CascadeClassifier(r'D:\Python\Lib\site-packages\cv2\data\haarcascade_frontalface_default.xml')
eye_cascade = cv2.CascadeClassifier(r"D:\Python\Lib\site-packages\cv2\data\haarcascade_eye_tree_eyeglasses.xml")
mouth = cv2.CascadeClassifier(r"D:\Python\Lib\site-packages\cv2\data\haarcascade_smile.xml")
cap=cv2.VideoCapture(0)

while cap.isOpened():
    ret,img=cap.read()
    gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    faces=detector.detectMultiScale(gray,minSize=(100,100),flags=cv2.CASCADE_SCALE_IMAGE)

    for (x,y,w,h) in faces:

        cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)

        roi_gray = gray[y:y + h, x:x + w]
        roi_color = img[y:y + h, x:x + w]
        # cv2.imshow('roi_gray',roi_gray)
        cv2.imshow('roi_color', roi_color)
        cv2.putText(img, 'dog_face', (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (255, 0, 0), 2)
        eyes = eye_cascade.detectMultiScale(roi_gray, minSize=(100, 100), flags=cv2.CASCADE_SCALE_IMAGE)
        mouths = mouth.detectMultiScale(roi_gray, minSize=(100, 100), flags=cv2.CASCADE_SCALE_IMAGE)
        for (ex, ey, ew, eh) in eyes:
            cv2.rectangle(roi_color, (ex, ey), (ex + ew, ey + eh), (0, 255, 0), 2)

            cv2.putText(img,'eye',(ex,ey-1),cv2.FONT_HERSHEY_SIMPLEX,0.75,(0,0,255),2)
        for (mx,my,mw,mh) in mouths:
            cv2.rectangle(roi_color, (mx, my), (mx + mw, my + mh), (0, 255, 0), 2)

            cv2.putText(img, 'mouth', (mx+100, my+100), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 0, 255), 2)
    cv2.imshow('frame', img)
    if cv2.waitKey(5) & 0xFF == ord('q'):
        break


cap.release()
cv2.destroyAllWindows()

可以通过以下步骤使用dlib库提取嘴巴内部轮廓图: 1. 导入dlib库并加载人脸检测器和关键点检测器模型: ```python import dlib detector = dlib.get_frontal_face_detector() predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat") ``` 这里需要下载dlib预训练的人脸检测器和关键点检测器模型文件,其中"shape_predictor_68_face_landmarks.dat"是针对68个关键点的检测模型。 2. 加载图片并进行人脸检测和关键点检测: ```python import cv2 img = cv2.imread("test.jpg") gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) rects = detector(gray, 0) landmarks = predictor(gray, rects[0]) ``` 这里使用OpenCV库读取图片,将彩色图片转换为灰度图像,然后使用dlib的人脸检测器和关键点检测器模型对图像进行检测。 3. 提取嘴巴内部轮廓点: ```python mouth_points = [] for i in range(48, 60): mouth_points.append((landmarks.part(i).x, landmarks.part(i).y)) for i in range(64, 68): mouth_points.append((landmarks.part(i).x, landmarks.part(i).y)) mask = np.zeros_like(gray) cv2.fillPoly(mask, [np.array(mouth_points)], 255) mouth_img = cv2.bitwise_and(gray, mask) ``` 这里根据dlib模型中的关键点编号提取嘴巴内部轮廓点,然后使用OpenCV库中的fillPoly()函数将其转化为二值掩膜图像。最后,使用OpenCV库中的bitwise_and()函数将原始灰度图像和掩膜图像进行按位与操作,得到嘴巴内部轮廓图像。 4. 显示结果: ```python cv2.imshow("Mouth Contour", mouth_img) cv2.waitKey(0) cv2.destroyAllWindows() ``` 这里使用OpenCV库显示提取的嘴巴内部轮廓图像。 完整代码如下: ```python import cv2 import dlib import numpy as np detector = dlib.get_frontal_face_detector() predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat") img = cv2.imread("test.jpg") gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) rects = detector(gray, 0) landmarks = predictor(gray, rects[0]) mouth_points = [] for i in range(48, 60): mouth_points.append((landmarks.part(i).x, landmarks.part(i).y)) for i in range(64, 68): mouth_points.append((landmarks.part(i).x, landmarks.part(i).y)) mask = np.zeros_like(gray) cv2.fillPoly(mask, [np.array(mouth_points)], 255) mouth_img = cv2.bitwise_and(gray, mask) cv2.imshow("Mouth Contour", mouth_img) cv2.waitKey(0) cv2.destroyAllWindows() ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

悸尢

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值