文章目录
一、人脸检测流程介绍
- 下面是一张含有多个人脸的图片
- 第一步:读取图片后将图片转换成灰度图
- 第二步:在灰度图中进行特征检测,并检测出各个人脸的特征信息
- 第三步:将各个人脸的特征信息保存下来
- 第四部:根据检测出的人脸的特征信息,在原图中用矩形框,框出每个人的脸部区域
- 最终的结果如下:
二、用于人脸检测的关键方法
1.加载分类器(cv2.CascadeClassifier())
- 在OpenCV库中,提供了多个用于检测人脸的Haar特征的级联分类器,并以xml文件的形式存储,这些文件是预训练的,意味着它已经被训练好了,可以直接用于检测图像中的人脸
- 下面链接中是对人脸检测的Haar特征和级联分类器的介绍:
- 如何找到这些xml文件呢?
- 这些 xml文件存在我们pycharm的环境中,通过下图中的步骤找到:
- 这些 xml文件存在我们pycharm的环境中,通过下图中的步骤找到:
- 找到这些文件后通过 cv2.CascadeClassifier() 加载分类器
- cv2.CascadeClassifier 是 OpenCV 库中用于加载和训练级联分类器的一个类
2.检测图像中的人脸(cv2.CascadeClassifier.detectMultiscale())
-
在OpenCV中,cv2.CascadeC