简单线性回归——最小二乘法的实现

“最小二乘法”估计线性模型的参数(权重w和截距b

import numpy as np
import matplotlib.pyplot as plt
import random

x=np.linspace(1,20,50)
noise=np.random.normal(0,2,(1,50))
w_real=rd.random()
b_real=rd.randint(2,5)
y=x*w_real+b_real+noise

x_avg=np.mean(x)
w=np.sum(y*(x-x_avg))/(np.sum(x*x)-x_avg*np.sum(x))
print(w_real,w)

y_avg=np.mean(y)
b=y_avg-np.mean(w*x)
print(b_real,b)

plt.scatter(x,y)
plt.plot(x,w*x+b)
plt.show()

1.导入库:

  • np 是 NumPy 的缩写,这是一个用于处理数组和矩阵的强大库。
  • plt 是 Matplotlib.pyplot 的缩写,用于绘图。
  • rd 是 random 的缩写

2.生成数据:

x=np.linspace(1,20,50)  # 生成一个包含50个点的等差数列,从1到20  
noise=np.random.normal(0,2,(1,50))  # 生成一个形状为(1,50)的数组,包含来自正态分布的随机噪声  
w_real=rd.random()  # 生成一个随机斜率,但这里假设rd是random的某种形式  
b_real=rd.randint(2,5)  # 生成一个2到4之间的随机整数作为截距  
y=x*w_real+b_real+noise  # 根据斜率、截距和噪声生成y值

3.简单线性回归(最小二乘法):
这里使用了最小二乘法的公式来估计斜率 w

x_avg=np.mean(x)  # 计算x的平均值  
w=np.sum(y*(x-x_avg))/(np.sum(x*x)-x_avg*np.sum(x))  # 使用最小二乘法公式计算斜率  
print(w_real,w)  # 打印真实的斜率和估计的斜率

4.截距:
使用斜率 w 和数据点的平均值来估计截距 b

y_avg=np.mean(y)  # 计算y的平均值  
b=y_avg-np.mean(w*x)  # 使用斜率w和x的平均值来估计截距b  
print(b_real,b)  # 打印真实的截距和估计的截距

5.绘图

plt.scatter(x,y)  # 绘制数据点  
plt.plot(x,w*x+b)  # 绘制拟合的直线  
plt.show()  # 显示图像

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

香克斯的格里芬

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值