P1004方格取数(最大权重和)

https://www.luogu.com.cn/problem/P1004

设有 N \times NN×N 的方格图 (N \le 9)(N≤9),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字 00。如下图所示(见样例):

A
 0  0  0  0  0  0  0  0
 0  0 13  0  0  6  0  0
 0  0  0  0  7  0  0  0
 0  0  0 14  0  0  0  0
 0 21  0  0  0  4  0  0
 0  0 15  0  0  0  0  0
 0 14  0  0  0  0  0  0
 0  0  0  0  0  0  0  0
                         B

某人从图的左上角的 AA 点出发,可以向下行走,也可以向右走,直到到达右下角的 BB 点。在走过的路上,他可以取走方格中的数(取走后的方格中将变为数字 00)。
此人从 AA 点到 BB 点共走两次,试找出 22 条这样的路径,使得取得的数之和为最大。

输入格式

输入的第一行为一个整数 NN(表示 N \times NN×N 的方格图),接下来的每行有三个整数,前两个表示位置,第三个数为该位置上所放的数。一行单独的 00 表示输入结束。

输出格式

只需输出一个整数,表示 22 条路径上取得的最大的和。

输入输出样例

输入 #1复制

8
2 3 13
2 6  6
3 5  7
4 4 14
5 2 21
5 6  4
6 3 15
7 2 14
0 0  0

输出 #1复制

67

 

这题我最初使用dp做的,但是我无法将第一遍走过的标记为0,就找了大佬的代码,发现一个大佬把我的想法给用代码实现了,不得不说还是很佩服的 

#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
int f1[11][11];
int f2[11][11];

int main(){
	int n;
	cin>>n;
	int a,b,c;
	while(cin>>a>>b>>c){
		if(!a&&!b&&!c) break;
		f1[a][b]=c;
		f2[a][b]=c;
	}
	for(int i=1;i<=n;i++){
		for(int j=1;j<=n;j++){
			f1[i][j]+=max(f1[i-1][j],f1[i][j-1]);
		}
	}//dp第一遍 
	int a=f1[n][n];
	while(a>0){//找到第一遍dp走过的点,并标记为0 
		for(int i=1;i<=n;i++){
			int b=1;
			for(int j=1;j<=n;j++){
				if(f1[i][j]==a){
					a-=f2[i][j];
					f2[i][j]=0;
					b=0;
					break;
				}
			}
			if(b==0) break;//对于为什么不能从最后一个点向前遍历我也不是很清楚,会有一个样例WA 
		}
	}
	for(int i=1;i<=n;i++){
		for(int j=1;j<=n;j++){
			f2[i][j]+=max(f2[i-1][j],f2[i][j-1]);
		}
	}//dp第二遍 
	cout<<f2[n][n]+f1[n][n]<<endl; 
	
	return 0;
} 

四维dp:

#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
int f[10][10];
int fp[10][10][10][10];

int main(){
	int n;
	cin>>n;
	int a,b,c;
	while(cin>>a>>b>>c){
		if(!a&&!b&&!c) break;
		f[a][b]=c;
	}
	for(int i=1;i<=n;i++){
		for(int j=1;j<=n;j++){
			for(int p=1;p<=n;p++){
				for(int q=1;q<=n;q++){//fp[i][j][p][q]表示第一个人走到f[i][j]第二个人走到f[p][q]时的最大值,且二人是同步进行
					fp[i][j][p][q]=max(max(fp[i-1][j][p-1][q],fp[i-1][j][p][q-1]),max(fp[i][j-1][p-1][q],fp[i][j-1][p][q-1]));
					if(i==p&&j==q) fp[i][j][p][q]+=f[i][j];
					else fp[i][j][p][q]=fp[i][j][p][q]+f[i][j]+f[p][q];
				}
			}
		}
	}
	cout<<fp[n][n][n][n]<<endl;
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值