https://www.luogu.com.cn/problem/P1004
设有 N \times NN×N 的方格图 (N \le 9)(N≤9),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字 00。如下图所示(见样例):
A
0 0 0 0 0 0 0 0
0 0 13 0 0 6 0 0
0 0 0 0 7 0 0 0
0 0 0 14 0 0 0 0
0 21 0 0 0 4 0 0
0 0 15 0 0 0 0 0
0 14 0 0 0 0 0 0
0 0 0 0 0 0 0 0
B
某人从图的左上角的 AA 点出发,可以向下行走,也可以向右走,直到到达右下角的 BB 点。在走过的路上,他可以取走方格中的数(取走后的方格中将变为数字 00)。
此人从 AA 点到 BB 点共走两次,试找出 22 条这样的路径,使得取得的数之和为最大。
输入格式
输入的第一行为一个整数 NN(表示 N \times NN×N 的方格图),接下来的每行有三个整数,前两个表示位置,第三个数为该位置上所放的数。一行单独的 00 表示输入结束。
输出格式
只需输出一个整数,表示 22 条路径上取得的最大的和。
输入输出样例
输入 #1复制
8 2 3 13 2 6 6 3 5 7 4 4 14 5 2 21 5 6 4 6 3 15 7 2 14 0 0 0
输出 #1复制
67
这题我最初使用dp做的,但是我无法将第一遍走过的标记为0,就找了大佬的代码,发现一个大佬把我的想法给用代码实现了,不得不说还是很佩服的
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
int f1[11][11];
int f2[11][11];
int main(){
int n;
cin>>n;
int a,b,c;
while(cin>>a>>b>>c){
if(!a&&!b&&!c) break;
f1[a][b]=c;
f2[a][b]=c;
}
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
f1[i][j]+=max(f1[i-1][j],f1[i][j-1]);
}
}//dp第一遍
int a=f1[n][n];
while(a>0){//找到第一遍dp走过的点,并标记为0
for(int i=1;i<=n;i++){
int b=1;
for(int j=1;j<=n;j++){
if(f1[i][j]==a){
a-=f2[i][j];
f2[i][j]=0;
b=0;
break;
}
}
if(b==0) break;//对于为什么不能从最后一个点向前遍历我也不是很清楚,会有一个样例WA
}
}
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
f2[i][j]+=max(f2[i-1][j],f2[i][j-1]);
}
}//dp第二遍
cout<<f2[n][n]+f1[n][n]<<endl;
return 0;
}
四维dp:
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
int f[10][10];
int fp[10][10][10][10];
int main(){
int n;
cin>>n;
int a,b,c;
while(cin>>a>>b>>c){
if(!a&&!b&&!c) break;
f[a][b]=c;
}
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
for(int p=1;p<=n;p++){
for(int q=1;q<=n;q++){//fp[i][j][p][q]表示第一个人走到f[i][j]第二个人走到f[p][q]时的最大值,且二人是同步进行
fp[i][j][p][q]=max(max(fp[i-1][j][p-1][q],fp[i-1][j][p][q-1]),max(fp[i][j-1][p-1][q],fp[i][j-1][p][q-1]));
if(i==p&&j==q) fp[i][j][p][q]+=f[i][j];
else fp[i][j][p][q]=fp[i][j][p][q]+f[i][j]+f[p][q];
}
}
}
}
cout<<fp[n][n][n][n]<<endl;
return 0;
}