题目描述
一年一度的“跳石头”比赛又要开始了!
这项比赛将在一条笔直的河道中进行,河道中分布着一些巨大岩石。组委会已经选择好了两块岩石作为比赛起点和终点。在起点和终点之间,有N块岩石(不含起点和终点的岩石)。在比赛过程中,选手们将从起点出发,每一步跳向相邻的岩石,直至到达终点。
为了提高比赛难度,组委会计划移走一些岩石,使得选手们在比赛过程中的最短跳跃距离尽可能长。由于预算限制,组委会至多从起点和终点之间移走M块岩石(不能移走起点和终点的岩石)。
输入
第一行包含三个整数L,N,M,别表示起点到终点的距离,起点和终点之间的岩石数,以及组委会至多移走的岩石数。
接下来N行,每行一个整数,第i行的整数Di(0<Di<L)表示第i块岩石与起点的距离。这些岩石按与起点距离从小到大的顺序给出,且不会有两个岩石出现在同一个位置。
输出
只包含一个整数,即最短跳跃距离的最大值。
样例输入 Copy
25 5 2 2 11 14 17 21样例输出 Copy
4提示
将与起点距离为 2 和 14 的两个岩石移走后,最短的跳跃距离为 4(从与起点距离 17 的岩石跳到距离 21 的岩石,或者从距离 21 的岩石跳到终点)。
对于 20% 的数据,0≤M≤N≤10。
对于 50% 的数据,0≤M≤N≤100。
对于 100% 的数据,0≤M≤N≤50,000,1≤L≤1,000,000,000。
思路:
二分答案,用最优策略判断当前mid是否可行
代码:
#include <iostream>
using namespace std;
int a[50005];
int m,n,l,r,mid,i,s;
bool check(int mid)
{
int cnt=0,now=a[0];//cnt:移除石头数,now:当前位置
for(i=1;i<=n+1;i++)
{
if(a[i]-a[now]>=mid) now=i;//判断当前起点到那块石头距离超过mid,找到更新now
else cnt++;//距离近移除石头
}
if(now=n+1&&cnt<=m) return true;//正好跳到终点,判断cnt
else if(now<n+1&&cnt+n+1-now<=m) return true;//未到终点,移除该点和终点间所有石头
else return false;
}
int main()
{
cin>>s>>n>>m;
for(i=1;i<=n;i++) scanf("%d",&a[i]);
a[n+1]=s;
l=0;r=s+1;
while(l+1<r)
{
mid=(r+l)/2;
if(check(mid)) l=mid;
else r=mid;
}
cout<<l;
return 0;
}