小 Biu 的旅行(dfs)

题目描述

小Biu所在的城市有n个景点,有一些景点之间有单向联通的道路,现在小Biu在1号景点上,他想知道到达除了1号景点之外的每个景点分别最少需要经过多少条道路?

如图所示为样例数据,可以知道小Biu到达2号景点的最短路线为1->2,到达3号景点的最短路线为1->3,到达4号景点的最短路线为1->2->4,到达5号景点的最短路线为1->3->5,到达6号景点的最短路线为1->3->5->6。所以答案分别为1,1,2,2,3。

输入

第1行两个正整数n,m,n表示景点的个数,n表示路径的条数。
第2行至第m-1行,每行两个u,v,表示u到v有一条单向联通的道路,数据保证没有重边和自环。

输出

输出n-1行,第i行表示从1号景点到达i+1号景点最少要经过几条道路,如果不能到达则输出-1。

样例输入 Copy

6 6
1 2
1 3
2 4
3 2
3 5
5 6

样例输出 Copy

1
1
2
2
3

提示

对于100%的数据,1≤u,v≤n≤1000,1≤m≤3000。

对权值为一的图求最短路用dfs

代码

#include <iostream>
#include <queue>
#include <cstring>
using namespace std;
int n,m;
int g[1010][1010],dist[1010];
void dfs()
{
    memset(dist,0x3f,sizeof dist);
    dist[1]=0;
    queue<int> q;
    q.push(1);
    while(q.size())
    {
        int t=q.front();
        q.pop();
        for(int i=1;i<=n;i++)
            if(dist[i]==0x3f3f3f3f&&g[t][i])
            {
                    dist[i]=dist[t]+1;
                    q.push(i);
            }
    }
}
int main()
{
    cin>>n>>m;
    while(m--)
    {
        int u,v;
        scanf("%d%d",&u,&v);
        g[u][v]=1;
    }
    dfs();
    for(int i=2;i<=n;i++)
        if(dist[i]!=0x3f3f3f3f) printf("%d\n",dist[i]);
        else printf("-1\n");
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值