Product 1 Modulo N(数论,1600)

题目链接:

Problem - 1514C - Codeforces

题目大意:

给定一个n,选择[1,2,3,.....n-1]的最长子序列,使得他们的乘积mul%n=1

思路:

首先,我们考虑那些数不可以做乘积,如果x与n不互质,则不可选择。

证明:

如果选择x则乘积mul和n不互质

gcd(mul%n,n)=gcd(mul,n)!=1 则mul%n!=1

将所有和n互质的数乘积模n记为p,如果p==1,即得到答案。若p!=1,将所有答案去除p即可。

证明

mul=k*n+p  

gcd(k*n+p,n)=gcd( (k*n+p)modn,n )=gcd(k,n)=1 (mul与n互质)

所以p与n互质,那么p必然出现在乘积项之中。令其他项乘积为prod

prod*p%n=p,所以prod%n=1

代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int> PII;
const int N=1e5+10;
int a[N],idx;
int gcd(int n,int m)
{
    return m?gcd(m,n%m):n;
}
void solve()
{
    int n,p=1;
    cin>>n;
    for(int i=1;i<n;i++){
        if(gcd(i,n)==1){
            a[++idx]=i;
            p=(ll)p*i%n;
        }
    }
    if(p!=1) cout<<idx-1<<'\n';
    else cout<<idx<<'\n';
    for(int i=1;i<=idx;i++)
    {
        if(p!=1&&a[i]==p) continue;
        cout<<a[i]<<' ';
    }
}
int main()
{
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    cout.tie(nullptr);
    solve();
    return 0;
}

总结:

1.gcd(n,m)=gcd(n%m,m)       辗转相除法

2.n,m互质,则gcd(n,m)=gcd(n%m,m)=gcd(p,m)=1

3.\prod ximodn=1,则每个xi与n互质

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值