C. Product 1 Modulo N(裴蜀定理、逆元)

题目传送门

题意: 给你一个正整数 n n n,让你在区间 [ 1 , n − 1 ] [1,n-1] [1,n1]中找出一个最长子序列 t i t_i ti,使得 ∏ i = 1 k t i m o d    n = 1 \prod\limits_{i=1}^k t_i \mod n=1 i=1ktimodn=1

思路: 首先,假定我们选择的序列包含数 a a a,设其他数的乘积为 x ( m o d    n ) x(\mod n) x(modn),那么就有 a ∗ x ≡ 1 ( m o d    n ) a * x ≡1(\mod n) ax1(modn),也就是 x x x a a a的逆元。那么 a a a就要满足 g c d ( a , n ) = 1 gcd(a,n)=1 gcd(a,n)=1,否则 a a a没有逆元,不可能入选。(至于证明,就是 e x g c d exgcd exgcd求逆元的过程,用到裴蜀定理。)

我们把所有与n互质的数在模 n n n意义下乘起来,可以得到一个小于 n n n的数 a n s ans ans a n s ans ans一定与 n n n互质(辗转相除的原理)。那么 a n s ans ans一定在前面出现过,如果 a n s ≠ 1 ans≠1 ans=1,那么在答案序列中把那个数删掉就行了。
假设出了 a n s ans ans以外,其他数的乘积为 y y y,那么就有 a n s ∗ y m o d    n = a n s ans *y\mod n=ans ansymodn=ans,得到 y m o d    n = 1 y\mod n = 1 ymodn=1

代码:

#define int long long
signed main()
{
	int n;
	cin>>n;
	int tot = 1;
	vector<int>ans;
	for(int i=1;i<=n-1;i++)
	{
		if(__gcd(i,n)==1)
		{
			tot = tot * i % n;
			ans.pb(i);
		}
	}
	tot %= n;
	if(tot!=1)
	{
		for(auto it = ans.begin();it!=ans.end();it++)
		{
			if(*it == tot)
			{
				ans.erase(it);
				break;
			}
		}
	}
	cout<<ans.size()<<endl;
	for(auto i:ans)
		cout<<i<<" ";
	
 
 
	return 0;
}
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值