数据增强:基于Yolov5/Yolov7/Yolov8---自动生成图片以及xml文件,解决小样本训练难等问题

105 篇文章 ¥129.90 ¥299.90
本文介绍了如何使用Yolov5/Yolov7进行数据增强,包括Gamma变化、滤波、缩放、翻转和旋转等方法,以解决小样本目标检测中的挑战,通过数据增强提高模型在小目标和遮挡物检测中的精度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1.数据增强(Data Augmentation)

2.自动生成图片和xml文件

2.1 Gamma变化数据增强

2.2 滤波类数据增强: GaussianBlur、medianBlur、blur

2.3  缩放类数据增强

2.4翻转类数据增强

2.5 任意角度旋转数据增强


 🏆🏆🏆🏆🏆🏆🏆Yolov5/Yolov7魔术师🏆🏆🏆🏆🏆🏆🏆
🌟🌟🌟魔改网络和复现cvpr等前沿论文,组合优化
🍉🍉🍉独家首创,可直接作为创新点使用
🚀🚀🚀在多个数据集进行验证mAP涨点明显,尤其是小目标、遮挡物精度提升明显; 
🌰 🌰 🌰🌰 🌰 🌰🌰 🌰 🌰🌰 🌰 🌰🌰 🌰 🌰🌰 🌰 🌰

1.小样本目标检测介绍      

  小样本目标检测方法主要基于传统的经典成熟的目标检测方法,借鉴小样本学习框架,构建针对目标检测的小样本解决方案。现有的方法主要可以分为六种:

(1)基于度量学习(metric learning)的方法
(2)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI小怪兽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值