随机变量的数字特征

随机变量的数字特征通常更容易获得,通过随机变量的数字特征我们可以更好的了解随机变量。不同的数字特征展现了随机变量的不同特点。期望是对随机变量的一个总体概括,方差体现了随机变量的离散程度,协方差更多的描述了随机变量之间的线性关系。在此基础上产生了反映超过三个随机变量的特征的工具:协方差矩阵

基本概念:

期望

E ( x ) = ∑ k = 1 ∞ x k p k E(x)=\sum_{k=1}^{\infty}{x_kp_k} E(x)=k=1xkpk
设连续型随机变量X的概率密度为 f ( x ) f(x) f(x)若积分 ∫ − ∞ ∞ x f ( x ) d x \int_{-\infty}^\infty xf(x)dx xf(x)dx绝对收敛
则:
E ( X ) = ∫ − ∞ ∞ x f ( x ) d x E(X)=\int_{-\infty}^\infty xf(x)dx E(X)=xf(x)dx
推广到二维随机变量:
E ( X ) = ∫ ∫ x f ( x , y ) d x d y E(X)=\int\int xf(x,y)dxdy E(X)=∫∫xf(x,y)dxdy

性质:

  1. C C C为常数则 E ( C ) = C E(C)=C E(C)=C
  2. C C C为常数则 E ( C X ) = C E ( X ) E(CX)=CE(X) E(CX)=CE(X)
  3. E ( X + Y ) = E ( X ) + E ( Y ) E(X+Y)=E(X)+E(Y) E(X+Y)=E(X)+E(Y) X X X Y Y Y是否独立无关
  4. X Y XY XY相互独立 E ( X Y ) = E ( X ) E ( Y ) E(XY)=E(X)E(Y) E(XY)=E(X)E(Y)

由2 3得数学期望的线性性质
E ( C 1 X + C 2 X + . . . + C n X ) = E ( C 1 X ) + E ( C 2 X ) + . . . . + E ( C n X ) E(C_1X+C_2X+...+C_nX)=E(C_1X)+E(C_2X)+....+E(C_nX) E(C1X+C2X+...+CnX)=E(C1X)+E(C2X)+....+E(CnX)

还有一个较为特殊的性质:
E ( X Y ) = E ( X ) E ( Y ) + E [ ( X − E ( X ) ( Y − E ( Y ) ) ] E(XY)=E(X)E(Y)+E[(X-E(X)(Y-E(Y))] E(XY)=E(X)E(Y)+E[(XE(X)(YE(Y))]
其中的 E [ ( X − E ( X ) ( Y − E ( Y ) ) ] E[(X-E(X)(Y-E(Y))] E[(XE(X)(YE(Y))]是两个随机变量的协方差

E [ g ( x ) ] = ∑ k = 1 ∞ g ( x k ) p k E[g(x)]=\sum_{k=1}^{\infty}{g(x_k)p_k} E[g(x)]=k=1g(xk)pk

∫ − ∞ ∞ g ( x ) f ( x ) d x \quad \int_{-\infty}^\infty g(x)f(x)dx g(x)f(x)dx绝对收敛时:
E ( Y ) = ∫ − ∞ ∞ g ( x ) f ( x ) d x E(Y)=\int_{-\infty}^\infty g(x)f(x)dx E(Y)=g(x)f(x)dx

性质的证明:

E ( X + Y ) = ∫ ∫ ( x + y ) f ( x , y ) d x d y = ∫ ∫ [ x f ( x , y ) + y f ( x , y ) ] d x d y ( 由 ∫ x f ( x , y ) d y = x f X ( x ) 可得下式 ) = ∫ x f ( x ) d x + ∫ y f ( y ) d y = E ( X ) + E ( Y ) \begin{aligned} &E(X+Y)\\ =&\int \int (x+y)f(x,y)dxdy \\ =&\int \int [xf(x,y)+ yf(x,y)]dxdy (由\int xf(x,y)dy=xf_X(x) 可得下式)\\ =&\int xf(x)dx+\int yf(y)dy\\ =&E(X)+E(Y) \end{aligned} ====E(X+Y)∫∫(x+y)f(x,y)dxdy∫∫[xf(x,y)+yf(x,y)]dxdy(xf(x,y)dy=xfX(x)可得下式)xf(x)dx+yf(y)dyE(X)+E(Y)
假设 X Y XY XY完全相互独立
E ( X Y ) = ∫ ∫ x y f ( x , y ) d x d y = ∫ ∫ x y f ( x ) f ( y ) d x d y = ∫ d y ∫ x f ( x ) y f ( y ) d x ⏟ y f ( y ) 可以被看作是一个常数 = ∫ y f ( y ) d y ∫ x f ( x ) d x = E ( Y ) E ( Y ) \begin{aligned} E(XY)&=\int \int xyf(x,y)dxdy\\ &=\int\int xyf(x)f(y)dxdy\\ &=\underset{yf(y)可以被看作是一个常数}{ \int dy\underbrace{\int xf(x)yf(y)dx} }\\ &=\int yf(y)dy\int xf(x)dx\\ &=E(Y)E(Y) \end{aligned} E(XY)=∫∫xyf(x,y)dxdy=∫∫xyf(x)f(y)dxdy=yf(y)可以被看作是一个常数dy xf(x)yf(y)dx=yf(y)dyxf(x)dx=E(Y)E(Y)

方差:

定义:若期望 E ( x ) E(x) E(x)存在 E { ( X − E ( X ) ) 2 } E\{(X-E(X))^2\} E{(XE(X))2},则称 E { ( X − X E ( X ) ) 2 } E\{(X-XE(X))^2\} E{(XXE(X))2} x x x的方差,记为 D ( x ) D(x) D(x) V a r ( x ) Var(x) Var(x)

D ( x ) = E { ( X − E ( X ) ) 2 } = E ( X 2 ) − [ E ( X ) ] 2 D(x)=E\{(X-E(X))^2\}=E(X^2)-[E(X)]^2 D(x)=E{(XE(X))2}=E(X2)[E(X)]2

由定义可知
D ( x ) = ∑ k = 1 ∞ ( x k − E ( x ) ) 2 p k D(x)= \sum_{k=1}^\infty (x_k-E(x))^2p_k D(x)=k=1(xkE(x))2pk

方差为非负数,表示 X X X的取值的分散程度。

性质

  1. D ( C ) = 0 D(C)=0 D(C)=0
  2. D ( C X ) = C 2 D ( X ) D ( X + C ) = D ( X ) D(CX)=C^2D(X)\quad D(X+C)=D(X) D(CX)=C2D(X)D(X+C)=D(X)
  3. D ( X + Y ) = D ( X ) + D ( Y ) + 2 E { X − E ( X ) } E { Y − E ( Y ) } D(X+Y)=D(X)+D(Y)+2E\{X-E(X)\}E\{Y-E(Y)\} D(X+Y)=D(X)+D(Y)+2E{XE(X)}E{YE(Y)}
  4. X Y XY XY相互独立则: D ( X + Y ) = D ( X ) + D ( Y ) D(X+Y)=D(X)+D(Y) D(X+Y)=D(X)+D(Y) D ( X ) = 0 D(X)=0 D(X)=0的充要条件是 X X X以概率1取常数 E ( X ) E(X) E(X)

性质的证明:

证: D ( x ) = E ( X 2 ) − [ E ( X ) ] 2 D(x)=E(X^2)-[E(X)]^2 D(x)=E(X2)[E(X)]2
D ( x ) = E { ( X − E ( X ) ) 2 } = E { X 2 + E ( X ) 2 − 2 X E ( X ) } = E ( X 2 ) + [ E ( X ) ] 2 − 2 [ E ( X ) ] 2 = E ( X 2 ) − [ E ( X ) ] 2 \begin{aligned} D(x)&= E\{(X-E(X))^2\}\\ &=E\{X^2+E(X)^2-2XE(X)\}\\ &=E(X^2)+[E(X)]^2-2[E(X)]^2\\ &=E(X^2)-[E(X)]^2 \end{aligned} D(x)=E{(XE(X))2}=E{X2+E(X)22XE(X)}=E(X2)+[E(X)]22[E(X)]2=E(X2)[E(X)]2
证:性质3
D ( X + Y ) = E { [ X + Y − E ( X + Y ) ] 2 } = E { [ X − E ( X ) + Y − E ( Y ) ] 2 } = E { [ X − E ( X ) ] 2 } + E { [ Y − E ( Y ) ] 2 } + 2 E { [ X − E ( X ) ] [ Y − E ( Y ) ] } = D ( X ) + D ( Y ) + 2 E { [ X − E ( X ) ] [ Y − E ( Y ) ] } \begin{aligned} &D(X+Y)\\ =&E\{[X+Y-E(X+Y)]^2\}\\ =&E\{[X-E(X)+Y-E(Y)]^2\}\\ =&E\{[X-E(X)]^2\}+E\{[Y-E(Y)]^2\}+2E\{[X-E(X)][Y-E(Y)]\}\\ =&D(X)+D(Y)+2E\{[X-E(X)][Y-E(Y)]\} \end{aligned} ====D(X+Y)E{[X+YE(X+Y)]2}E{[XE(X)+YE(Y)]2}E{[XE(X)]2}+E{[YE(Y)]2}+2E{[XE(X)][YE(Y)]}D(X)+D(Y)+2E{[XE(X)][YE(Y)]}

切比雪夫不等式:

P { ∣ X − E ( X ) ∣ ≥ ξ } ≤ D ( X ) ξ 2 P\{|X-E(X)| \ge \xi\}\leq \frac{D(X)}{\xi^2} P{XE(X)ξ}ξ2D(X)
或: P { ∣ X − E ( X ) ∣ < ξ } ≥ 1 − D ( X ) ξ 2 P\{|X-E(X)| <\xi\}\ge 1-\frac{D(X)}{\xi^2} P{XE(X)<ξ}1ξ2D(X)
证明:
P { ∣ X − E ( X ) ∣ ≥ ξ } = ∫ ∣ X − E ( X ) ∣ ≥ ξ ∞ f ( x ) d x ∵ ∣ X − E ( X ) ∣ < ξ ∴ [ X − E ( X ) ] 2 ξ 2 ≥ 1 ∴ 原式 ≤ ∫ ∣ X − E ( X ) ∣ ≥ ξ ∞ [ X − E ( X ) ] 2 ξ 2 f ( x ) d x ( 因为 f ( x ) 不小于 0 所以这里才能进行下一步的变换 ) ≤ ∫ − ∞ ∞ [ X − E ( X ) ] 2 ξ 2 f ( x ) d x = 1 ξ 2 ∫ − ∞ ∞ [ X − E ( X ) ] 2 f ( x ) d x = D ( x ) ξ 2 \begin{aligned} &P\{|X-E(X)| \ge \xi\} \\ =&\int_{|X-E(X)| \ge \xi}^\infty f(x)dx\\ &\because |X-E(X)| <\xi\\ &\therefore \frac{[X-E(X)]^2}{\xi^2}\ge1\\ &\therefore 原式\leq \int_{|X-E(X)| \ge \xi}^\infty \frac{[X-E(X)]^2}{\xi^2}f(x)dx\quad \\ &(因为f(x)不小于0所以这里才能进行下一步的变换)\\ &\leq \int_{-\infty}^\infty \frac{[X-E(X)]^2}{\xi^2}f(x)dx \\ &=\frac{1}{\xi^2}\int_{-\infty}^\infty [X-E(X)]^2f(x)dx\\ &=\frac{D(x)}{\xi^2} \end{aligned} =P{XE(X)ξ}XE(X)ξf(x)dxXE(X)<ξξ2[XE(X)]21原式XE(X)ξξ2[XE(X)]2f(x)dx(因为f(x)不小于0所以这里才能进行下一步的变换)ξ2[XE(X)]2f(x)dx=ξ21[XE(X)]2f(x)dx=ξ2D(x)

协方差和相关系数

C o v ( X , Y ) = E { [ X − E ( X ) ] [ Y − E ( Y ) ] } Cov(X,Y)=E\{[X-E(X)][Y-E(Y)]\} Cov(XY)=E{[XE(X)][YE(Y)]}
协方差是描述 X Y XY XY之间的关系的数字特征,当 X Y XY XY相互独立时 C o v ( X , Y ) = 0 Cov(X,Y)=0 Cov(X,Y)=0,相关系数用来衡量线性关系
ρ X Y = C o v ( X , Y ) D ( X ) D ( Y ) ∣ ρ X Y ∣ ≤ 1 \rho_{XY}=\frac{Cov(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}} \quad|\rho_{XY}|\leq1 ρXY=D(X) D(Y) Cov(XY)ρXY1

性质

C o v ( X , X ) = D ( X ) Cov(X,X)=D(X) Cov(X,X)=D(X)
C o v ( X , Y ) = E ( X Y ) − E ( X ) E ( Y ) Cov(X,Y)=E(XY)-E(X)E(Y) Cov(X,Y)=E(XY)E(X)E(Y)
D ( X + Y ) = D ( X ) + D ( Y ) + 2 C o v ( X , Y ) D(X+Y)=D(X)+D(Y)+2Cov(X,Y) D(X+Y)=D(X)+D(Y)+2Cov(X,Y)
C o v ( a X , b Y ) = a b C o v ( X , Y ) Cov(aX,bY)=abCov(X,Y) Cov(aX,bY)=abCov(X,Y)
C o v ( X 1 + X 2 , Y ) = C o v ( X 1 , Y ) + C o v ( X 2 , Y ) Cov(X_1+X_2,Y)=Cov(X_1,Y)+Cov(X_2,Y) Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y)
∣ ρ X Y ∣ = 1 |\rho_{XY}|=1 ρXY=1
概率为一的事件并不是必然事件。
ρ X Y = 1 \rho_{XY}=1 ρXY=1时称为正线性相关
ρ X Y = 0 \rho_{XY}=0 ρXY=0时称为不相关
ρ X Y = − 1 \rho_{XY}=-1 ρXY=1时称为负线性相关
事实上当 ∣ ρ X Y ∣ = 1 |\rho_{XY}|=1 ρXY=1时存在 a b a b ab使 Y = a X + b Y=aX+b Y=aX+b此时:
C o v ( X , Y ) = C o v ( X , a X + b ) = C o v ( X , a X + b ) = C o v ( X , a X ) + C o v ( X , b ) = a C o v ( X , X ) + C o v ( X , b ) = a D ( X ) \begin{aligned} Cov(X,Y)&=Cov(X,aX+b)\\ &=Cov(X,aX+b)\\ &=Cov(X,aX)+Cov(X,b)\\ &=aCov(X,X)+Cov(X,b)\\ &=aD(X) \end{aligned} Cov(X,Y)=Cov(X,aX+b)=Cov(X,aX+b)=Cov(X,aX)+Cov(X,b)=aCov(X,X)+Cov(X,b)=aD(X)
独立和相关的关系:
独立一定不相关,不相关未必独立
二维的正太随机变量的相关和独立等价
一般情况下相关和独立不等价

性质的证明

E { [ X − E ( X ) ] [ Y − E ( Y ) ] } = E [ X Y − X E ( Y ) − Y E ( X ) + E ( X ) E ( Y ) ] = E [ X Y ] − E [ X E ( Y ) ] − E [ Y E ( X ) ] + E [ E ( X ) E ( Y ) ] = E ( X Y ) − E ( X ) E ( Y ) − E ( Y ) E ( X ) + E ( X ) ( Y ) = E ( X Y ) − E ( X ) E ( Y ) \begin{aligned} &E\{[X-E(X)][Y-E(Y)]\}\\ =&E[XY-XE(Y)-YE(X)+E(X)E(Y)]\\ =&E[XY]-E[XE(Y)]-E[YE(X)]+E[E(X)E(Y)]\\ =&E(XY)-E(X)E(Y)-E(Y)E(X)+E(X)(Y)\\ =&E(XY)-E(X)E(Y) \end{aligned} ====E{[XE(X)][YE(Y)]}E[XYXE(Y)YE(X)+E(X)E(Y)]E[XY]E[XE(Y)]E[YE(X)]+E[E(X)E(Y)]E(XY)E(X)E(Y)E(Y)E(X)+E(X)(Y)E(XY)E(X)E(Y)

矩、协方差矩阵

矩:
原点矩: E ( X k ) E(X^k) E(Xk)
中心矩: E { [ X − E ( X ) ] k } E\{[X-E(X)]^k\} E{[XE(X)]k}
k + l k+l k+l阶混合矩 E ( X k Y l ) E(X^kY^l) E(XkYl)
k + l k+l k+l阶混合中心矩 E { [ X − E ( X ) ] k [ Y − E ( Y ) ] l } E\{[X-E(X)]^k[Y-E(Y)]^l\} E{[XE(X)]k[YE(Y)]l}
协方差矩阵:
n n n维随机变量 ( X 1 , X 2 , X 3 , . . . . , X n ) (X_1,X_2,X_3,....,X_n) (X1,X2,X3,....,Xn)的二维混合中心矩阵
c i j = C o v ( X i , X j ) c_{ij}=Cov(X_i,X_j) cij=Cov(Xi,Xj)都存在,则称矩阵
C = ( c 11 c 12 . . . . . . c 1 n c 21 c 22 . . . . . . c 2 n . . . . c n 1 c n 2 . . . . . . c n n ) C=\begin{pmatrix} c_{11}&c_{12}......c_{1n}\\c_{21}&c_{22}......c_{2n}\\..&..\\c_{n1}&c_{n2}......c_{nn} \end{pmatrix} C= c11c21..cn1c12......c1nc22......c2n..cn2......cnn
为协方差矩阵。

各种分布的期望和方差

均匀分布

f ( x ) = { 1 b − a x ∈ [ a , b ] 0 其他 %这是均匀分布的概率密度 f(x)=\begin{cases} \frac{1}{b-a}\quad &x\in [a,b] \\ 0 &其他 \end{cases} f(x)={ba10x[a,b]其他
E ( x ) = a + b 2 E(x)=\frac{a+b}{2} E(x)=2a+b
D ( x ) = 1 12 ( b − a ) 2 D(x)=\frac{1}{12}(b-a)^2 D(x)=121(ba)2

正太分布

f ( x ) = 1 2 σ π e − ( x − μ ) 2 2 σ 2 f(x)=\frac{1}{\sqrt{2\sigma}\pi}e^{-\frac{(x-\mu)^2}{2\sigma^2}} f(x)=2σ π1e2σ2(xμ)2
E ( x ) = μ E(x)=\mu E(x)=μ
D ( x ) = σ 2 D(x)=\sigma^2 D(x)=σ2

(0,1)分布

x01
P k P_k Pk1-pp

E ( X ) = p E(X)=p E(X)=p
D ( X ) = p ( 1 − p ) D(X)=p(1-p) D(X)=p(1p)

二项分布

将二项分布拆成 n n n个如上表的0-1分布相加
E ( x ) = n p E(x)=np E(x)=np
D ( X ) = n p ( 1 − p ) D(X)=np(1-p) D(X)=np(1p)

泊松分布

E ( x ) = λ E(x)=\lambda E(x)=λ
D ( x ) = λ D(x)=\lambda D(x)=λ

指数分布

f ( x ) = { 1 θ e − x θ x > 0 0 x ≤ 0 %这是指数分布的概率密度 f(x)=\begin{cases} \frac{1}{\theta }e^{-\frac{x}{\theta}} \quad &x>0 \\ 0 &x\leq 0 \end{cases} f(x)={θ1eθx0x>0x0
E ( X ) = ∫ 0 ∞ x f ( x ) d x = ∫ 0 ∞ x θ e − x θ d x 令: t = x θ x = θ t E ( X ) = ∫ 0 ∞ t e − t d ( θ t ) = ∫ 0 ∞ θ t e − t d t = θ ∫ 0 ∞ t e − t d t = θ \begin{aligned} E(X)&=\int_0^\infty xf(x)dx\\ &=\int_0^\infty \frac{x}{\theta }e^{-\frac{x}{\theta}} dx\\ 令:t=\frac{x}{\theta}\\ x=\theta t\\ E(X)&=\int_0^\infty t e^{-t}d(\theta t)\\ &=\int_0^\infty\theta t e^{-t}dt\\ &=\theta \int_0^\infty t e^{-t}dt\\ &=\theta \end{aligned} E(X)令:t=θxx=θtE(X)=0xf(x)dx=0θxeθxdx=0tetd(θt)=0θtetdt=θ0tetdt=θ

方差:
D ( X ) = θ 2 D(X)=\theta^2 D(X)=θ2

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值