
3dgs
文章平均质量分 66
这个专栏主要归纳一些本人在学习3dgs时所记录的一些难点
蜡笔小新配吉良吉影
一个冲冲冲的大学生
展开
-
3dgs学习(二)—— 3d高斯与协方差矩阵及其几何意义
3d高斯,及3维空间内的正态分布。通过一元正态分布的坐标系图像不难想象,3维空间中的正态分布点集中在一片椭球空间中,各方向长轴取决于各方向正态分布的方差。而协方差矩阵通过计算多元之间的协方差关系,反映了椭球在空间中所呈现的几何形态,具体表现方法见下文。原创 2024-02-24 19:37:06 · 4516 阅读 · 1 评论 -
3DGS学习(七)—— 自适应高斯密度控制
由于初始化点云可能导致生成高斯在空间中密度过大或过小,3dgs给出一些手段来在学习过程中自适应地调控密度,具体方法有点密集化和点剪枝。原创 2024-02-25 20:40:48 · 3312 阅读 · 0 评论 -
3DGS学习(五)—— sfm初始化点云
此部分不是3dgs主要的算法改进部分,只是通过sfm算法处理图片并初始化点云,进行后续操作。原创 2024-02-25 18:54:45 · 2406 阅读 · 0 评论 -
3DGS学习(三)—— 球谐函数
球谐函数可以类比泰勒展开,傅里叶级数。都是通过一组不同阶的基函数线性组合而成,只不过傅里叶级数的基函数是三角函数,而球谐函数的基函数是球函数。即正交基为球函数,极坐标即球函数系数。同样就像傅里叶变换拟合曲线一样,球谐函数拟合3d物体时,所用阶数越高,拟合越贴切,但是也有可能出现过拟合的情况。原创 2024-02-25 13:06:40 · 5636 阅读 · 0 评论 -
3DGS学习(六)—— 参数更新
旋转四元数的核心思想是,通过对旋转轴上的旋转角度进行编码,以及通过旋转轴的单位向量来表示旋转的方向。旋转四元数的实部(w)用于表示旋转角度的余弦值,而虚部(x, y, z)则表示旋转轴在单位向量上的三个分量。旋转四元数通常表示为q = w + xi + yj + zk,其中w是实部,(x, y, z)是虚部,i、j、k是虚数单位。的梯度,节约了自动微分的成本,具体可以参考3dgs原论文附录部分的梯度回传数学推导部分。根据相机位置和方向向量,计算目标颜色对高斯函数均值的导数;原创 2024-02-25 19:47:21 · 3532 阅读 · 0 评论 -
3DGS学习(四)—— 快速高斯光栅化
该过程将3D空间内的3D椭球投影到2D空间中进行渲染,该过程主要对表示椭球的协方差矩阵乘上变换矩阵加以实现。类比到现实生活中,就好像将雪球用力掷向墙壁,啪的一声绽开,在墙上留下了一个中心密集,向四周逐渐变浅变稀疏的雪块。的像素点,我们可以通过视图变化计算出所有在该位置重叠的高斯的深度并排序,最后对排列好的高斯进行alpha融合,返回该像素点最后的颜色值。对于覆盖多个块的高斯,作者复制高斯并为他们分配标识符。确定相机位姿进一步确定视锥体,有利于剔除视锥体以外的部分,防止出现浪费的计算。图片摘自知乎@目难忘。原创 2024-02-25 18:35:58 · 5463 阅读 · 0 评论 -
3DGS学习(一)—— 基本流程
3DGS学习(一)基本流程通过colmap应用sfm算法初始化点云3d椭球集重建(协方差记录形状信息)(高斯椭球的旋转缩放)球谐函数记录颜色及不透明度信息计算loss并使用梯度下降更新参数快速高斯光栅化(splatting)优化:自适应点云变换pruning (透明度小于一定程度则remove该点云)densification(方差过大 -> 克隆高斯)(方差过小 -> 分割高斯)论文中的伪代码原创 2024-02-24 18:34:17 · 2487 阅读 · 0 评论