[AIOps]项目发布版本匹配检测构思

新星杯·14天创作挑战营·第17期 10w+人浏览 580人参与

目录

工作流图

Chatflow流图

LLM设计

结果分析提示词

代码执行

​编辑HTTP请求

匹配检测请求

参数提取

提取任务id

运行效果

微服务


工作流图

Chatflow流图

LLM设计


意图识别提示词

你是一个智能数据转换专家。请根据用户明确指定的系统类型直接输出后端API需要的严格JSON格式。

转换规则:

1. 主机组处理:只有用户明确提到"在线客服"系统时才需要处理主机组,将"KF"前缀改为"zong"前缀。其他系统不需要主机组,hosts字段为空字符串

2. 项目信息解析:从用户输入中提取项目名和版本号的对应关系

3. cache_key根据用户明确指定的系统类型确定:

   - 在线客服 → "versions"

   - SCRM → "scrm_versions" 

   - KCST → "kcst_versions"

   - KICP → "kicp_versions"

   - AIDH → "aidh_versions"

   - AICC → "aicc_versions"

   - 微服务中心 → "center_versions"

4. force_refresh默认为true

重要:只基于用户明确指定的系统类型来选择cache_key,不要通过项目名称推断系统类型。

输出格式:

{"hosts":"主机组或空字符串","projects":{"项目名":"版本号",...},"cache_key":"对应key","force_refresh":true}

禁止任何解释,只输出JSON。

结果分析提示词

请对提供的执行结果进行详细分析,并提供简洁明了的说明。分析应包括以下关键点:

任务状态:明确指出任务是成功完成、部分完成还是失败。

关键操作步骤:概述任务执行的关键步骤,特别是指出哪些步骤已经完成。

成功/失败的服务列表:列出所有成功执行的服务和失败的服务。

下一步建议:根据任务的当前状态,提供明确的下一步操作建议。如果任务仅完成了构建步骤,应特别指出后续的发布操作需要用户手动处理。

请确保分析结果准确、客观,并且输出格式清晰,便于用户快速理解。

输入:{{#1763717697867.body#}}

代码执行

def main(arg1) -> dict:

    import json

    import re

   

    # 将输入转换为字符串

    if isinstance(arg1, dict):

        text_content = arg1.get("text", "")

    else:

        text_content = str(arg1)

   

    # 提取 JSON 代码块

    match = re.search(r'```(?:json)?\s*(\{.*\})\s*```', text_content, re.DOTALL)

    if match:

        json_str = match.group(1)

        try:

            data = json.loads(json_str)

            # 返回表单格式需要的字段

            return {

                "status": "success",

                "hosts": data.get("hosts", ""),

                "projects": data.get("projects", {}),  # 保持为对象,用于调试

                "projects_string": json.dumps(data.get("projects", {})),  # 转换为 JSON 字符串用于表单提交

                "scene": data.get("cache_key", "versions"),

                "force_refresh": 'True'

            }

        except Exception as e:

            print(f"JSON 解析错误: {e}")

            pass

   

    # 如果上面失败,尝试直接提取 JSON

    match = re.search(r'(\{.*\})', text_content, re.DOTALL)

    if match:

        json_str = match.group(1)

        try:

            data = json.loads(json_str)

            # 返回表单格式需要的字段

            return {

                "status": "success", 

                "hosts": data.get("hosts", ""),

                "projects": data.get("projects", {}),  # 保持为对象,用于调试

                "projects_string": json.dumps(data.get("projects", {})),  # 转换为 JSON 字符串用于表单提交

                "scene": data.get("cache_key", "versions"),

                "force_refresh": 'True'

            }

        except Exception as e:

            print(f"JSON 解析错误: {e}")

            pass

   

    return {

        "status": "error",

        "hosts": "",

        "projects": {},

        "projects_string": "{}",

        "scene": "versions",

        "force_refresh": 'True'

    }



HTTP请求

匹配检测请求

任务执行结果请求

匹配结果请求
也就是任务执行结果请求的再次请求一次确保获取任务执行结果。具体参考如上

参数提取

提取任务id


循环操作

如果任务状态包含status:SUCCESS则退出循环


运行效果

微服务

<think> 我们正在查找关于如何将Dify与ELK 6.5.4结合实现AIOps日志分析操作的方法。根据提供的引用,我们可以提取以下关键信息: 1. Dify.AI的日志分析系统提供了监控和调试能力(引用[1])。 2. Dify是一个开源大模型应用开发平台,支持构建基于LLM的AI应用(引用[2])。 3. 引用[3]展示了如何使用Dify的LLM节点从错误日志中提取结构化信息。 结合这些信息,我们可以推断:将Dify与ELK(Elasticsearch, Logstash, Kibana)结合,主要是利用ELK收集和存储日志,然后使用Dify的AI能力(通过LLM)对日志进行分析,实现智能运维AIOps)。 具体步骤可能包括: 1. 使用ELK(6.5.4版本)搭建日志收集系统: - Logstash:收集、过滤和转发日志。 - Elasticsearch:存储和索引日志。 - Kibana:可视化日志数据。 2. 将日志数据导入Dify进行分析: - 可以通过Dify提供的API,将ELK中的日志数据发送给Dify应用。 - 在Dify中创建应用,设计工作流(如引用[3]所示),使用LLM节点来提取关键信息或分析日志。 3. 在Dify中构建日志分析应用: - 根据引用[3],我们可以设计一个提示词(Prompt)来指导LLM从日志中提取特定信息(如错误类方法、行号等)。 - 然后,我们可以将分析结果结构化,并可能存储回Elasticsearch或用于告警等。 4. 将分析结果反馈到ELK或告警系统: - Dify分析后的结构化数据可以存储回Elasticsearch,以便在Kibana中展示。 - 也可以根据分析结果触发告警。 但是,目前提供的引用中并没有直接给出Dify与ELK 6.5.4集成的详细步骤。因此,我们需要根据Dify和ELK的特性进行合理推断。 **可能的集成方法:** **步骤1:配置ELK收集日志** - 安装并配置ELK 6.5.4,确保能够正常收集和存储日志。 **步骤2:创建Dify应用** - 在Dify中创建一个新的应用,选择“文本生成”或“工作流”类型。 - 设计工作流,例如: - 输入:日志字符串(从ELK中获取)。 - 使用LLM节点,配置提示词(如引用[3]中的示例)来提取关键信息。 - 输出:结构化数据(JSON格式)。 **步骤3:建立ELK与Dify的通信** - 方法一:使用Logstash的HTTP输出插件将日志发送到Dify应用的API。 - 在Logstash配置中添加一个http输出,将日志发送到Dify应用的API端点(Dify应用需要发布并获取API密钥)。 - 方法二:使用Elasticsearch的查询获取日志,然后通过自定义脚本(如Python)调用Dify API。 - 编写一个脚本,定期从Elasticsearch中读取日志,调用Dify API进行分析,然后将结果写回Elasticsearch。 **步骤4:在Kibana中展示分析结果** - 将Dify返回的结构化数据存储到Elasticsearch的另一个索引中。 - 在Kibana中创建仪表板,展示原始日志和分析后的关键信息(如错误方法、行号等)。 **步骤5:告警与自动化** - 利用Kibana的告警功能,根据分析结果(如特定错误出现频率)触发告警。 由于ELK 6.5.4是一个较老的版本,需要注意与Dify的API调用的兼容性(主要是HTTP请求的发送和接收)。 **示例工作流(在Dify中):** 1. 输入:日志字符串(通过API传入)。 2. LLM节点:配置提示词,例如(类似引用[3]): ``` 你是一个日志分析助手,请从给定的错误日志字符串中提取以下信息(如果存在): - `error_classMethod`: 发生错误的完整类方法路径 - `error_method`:方法名 - `error_row`:发生错误的代码行号 请严格按照日志内容提取,不要自行推断。如果不存在,则返回null。 日志内容:{输入变量} ``` 3. 输出:JSON格式的结构化数据。 **调用Dify API的示例:** Dify应用发布后,可以通过HTTP POST请求调用: ```bash curl -X POST "https://api.dify.ai/v1/completion-messages" \ -H "Authorization: Bearer {api_key}" \ -H "Content-Type: application/json" \ -d '{ "inputs": { "input": "2023-01-01 ERROR com.example.MyClass:15 - NullPointerException at com.example.MyClass.doSomething(MyClass.java:15)" } }' ``` **在ELK中集成:** 在Logstash配置中,可以添加一个http输出,将日志发送到Dify API(注意:需要处理Dify返回的结果并存储到Elasticsearch)。但是,由于Logstash的http输出插件默认不支持将响应结果存储,可能需要使用其他方式(如使用Logstash的ruby插件处理响应,或者使用Elasticsearch的Ingest Pipeline配合脚本调用外部API)。 另一种更常见的做法是:使用Elasticsearch的Logstash将日志存储后,再通过外部程序(如Python脚本)定期从Elasticsearch中读取未处理的日志,发送到Dify处理,并将结果存回Elasticsearch。 **总结步骤:** 1. 使用ELK(6.5.4)收集和存储日志。 2. 在Dify中构建日志分析应用(使用LLM节点提取关键信息)。 3. 通过中间程序(如Logstash的http输出或自定义脚本)将日志发送到Dify API进行分析。 4. 将Dify返回的结构化数据存储到Elasticsearch。 5. 在Kibana中展示分析结果并设置告警。 由于具体实现细节较多,这里只能提供大致思路。实际部署时,需要根据具体环境进行调整。 §§相关问题§§ 1. Dify的API调用频率限制是多少? 2. 如何优化Dify与ELK集成的性能? 3. 在ELK中如何设计索引来存储Dify分析后的结构化数据? </think> 要将 Dify 与 ELK 6.5.4 结合实现 AIOps 日志分析,可按以下步骤操作: ### 一、系统架构设计 ``` 日志源 → Logstash 6.5.4 → Elasticsearch 6.5.4 → Dify AI 分析 → Kibana 可视化 (日志收集) (存储/索引) (智能分析) (结果展示) ``` ### 二、关键实现步骤 1. **配置 ELK 日志管道** - 在 Logstash 中配置输入插件收集日志(如 Filebeat 或直接读取日志文件) - 使用 Grok 过滤器进行基础日志解析: ```ruby filter { grok { match => { "message" => "%{TIMESTAMP_ISO8601:timestamp} %{LOGLEVEL:level} %{GREEDYDATA:content}" } } } ``` - 输出到 Elasticsearch 6.5.4 索引,例如 `logstash-aiops-%{+YYYY.MM.dd}` 2. **Dify 应用开发** - 创建 **AIOps 日志分析** 应用 - 配置 LLM 节点(参考引用[3]): ```python SYSTEM_PROMPT = """ 你是一个AIOps日志分析专家,请执行: 1. 错误根因定位 2. 异常模式识别 3. 生成修复建议 4. 输出JSON格式:{"root_cause":"...", "patterns":["...",], "solutions":["...",]} """ ``` - 添加 API 触发器并记录 API Key 3. **ELK-Dify 集成** - 通过 Elasticsearch **Ingest Pipeline** 调用 Dify API: ```json { "description": "Call Dify AI Analysis", "processors": [ { "http": { "url": "https://api.dify.ai/v1/completion-messages", "method": "POST", "headers": { "Authorization": "Bearer {API_KEY}" }, "body": "{\"inputs\": {\"log\": \"{{content}}\"}}" } }, { "set": { "field": "ai_analysis", "value": "{{_ingest._value.body}}" } } ] } ``` 4. **Kibana 可视化** - 创建 Dashboard 包含: - 错误频率热力图 - 根因分类饼图 - 智能修复建议列表 - 设置告警规则(如相同错误10分钟内触发5次) ### 三、典型工作流程 1. 应用报错日志进入 ELK 管道 2. Elasticsearch 通过 Ingest Pipeline 自动触发 Dify 分析 3. Dify LLM 返回结构化分析结果(示例): ```json { "root_cause": "数据库连接池耗尽", "patterns": ["ConnectionTimeoutException", "PoolEmptyError"], "solutions": [ "增加数据库连接池大小", "检查连接泄漏" ] } ``` 4. Kibana 实时展示分析结果和告警 ### 四、优化建议 1. **性能优化** - 在 Logstash 添加错误日志过滤器,仅关键日志触发 AI 分析 - 使用 Dify 异步处理模式避免阻塞日志管道 2. **成本控制** ```mermaid graph LR A[日志级别≥WARN] --> B[Dify分析] C[DEBUG/INFO日志] --> D[基础分析] ``` 3. **安全加固** - 在 ELK 和 Dify 间配置双向 TLS 认证 - 使用 Dify 的访问令牌轮换机制 > 提示:ELK 6.5.4 需确保 ingest-http 插件已安装,可通过 `bin/elasticsearch-plugin install ingest-http` 安装[^1][^3]
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值