3/23脑筋急转弯(找规律)

Nim游戏

你和你的朋友,两个人一起玩 Nim 游戏:桌子上有一堆石头。你们轮流进行自己的回合, 你作为先手 。

每一回合,轮到的人拿掉 1 - 3 块石头。拿掉最后一块石头的人就是获胜者。假设你们每一步都是最优解。请编写一个函数,来判断你是否可以在给定石头数量为 n 的情况下赢得游戏。如果可以赢,返回 true;否则,返回 false 。

示例 1:

输入:n = 4

输出:false

解释:以下是可能的结果:

1. 移除1颗石头。你的朋友移走了3块石头,包括最后一块。你的朋友赢了。

2. 移除2个石子。你的朋友移走2块石头,包括最后一块。你的朋友赢了。

3.你移走3颗石子。你的朋友移走了最后一块石头。你的朋友赢了。

在所有结果中,你的朋友是赢家。

class Solution {
    public boolean canWinNim(int n) {
        // 无论怎么取,最后给对手剩下4颗石头,就能获胜。
        // 因此,n 不能是4的倍数
        return n % 4 != 0;
    }
}

灯泡开关

初始时有 n 个灯泡处于关闭状态。第一轮,你将会打开所有灯泡。接下来的第二轮,你将会每两个灯泡关闭第二个。第三轮,你每三个灯泡就切换第三个灯泡的开关(即,打开变关闭,关闭变打开)。第 i 轮,你每 i 个灯泡就切换第 i 个灯泡的开关。直到第 n 轮,你只需要切换最后一个灯泡的开关。找出并返回 n 轮后有多少个亮着的灯泡。

示例:

输入:n = 3

输出:1

解释:

初始时, 灯泡状态 [关闭, 关闭, 关闭].

第一轮后, 灯泡状态 [开启, 开启, 开启].

第二轮后, 灯泡状态 [开启, 关闭, 开启].

第三轮后, 灯泡状态 [开启, 关闭, 关闭].

返回 1,因为只有一个灯泡还亮着。

class Solution {
    public int bulbSwitch(int n) {
        return (int) Math.floor(Math.sqrt(n));
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值