Numpy数组 数据筛选

 bool索引的使用

def delete_Pdata(data, label):
    """去除标签为1的片段,如果标签向量和大于0"""
    for i in range(len(label)):
        if label[i].sum()>0:
            data=np.delete(data,i,axis=0)
            label=np.delete(label,i,axis=0)
    return data,label

背景:label是一个9000*1000的向量,希望删除其中标签中含有1的样本,最开始使用循环删除,发现:range(len(label))并不随下面的删除进行而动态改变,导致最终出现索引错误。

正确做法使用bool索引:

import numpy as np
#bool 索引
label=[0,1,1,1,0,0,1,0,1,0]
data=np.random.rand(10,2)
print(data)

data数据为一个10*2的矩阵,接下来创建bool 索引:

mask=(np.array(label)==1)
print(mask)
print(data[mask])

从下面的结果图片中可以看出,mask获得了一个与data行长度一致的bool序列,使用这个bool序列实现了对于data行向量的筛选

 从而基于bool索引改进代码:

def delete_Pdata(data, label):
    """去除标签为1的片段,如果标签向量和大于0"""
    # 创建一个布尔数组,标记需要保留的行
    mask = label.sum(axis=1) <= 0
    # 使用布尔索引选择需要保留的数据和标签
    filtered_data = data[mask]
    filtered_label = label[mask]
    return filtered_data, filtered_label

np.where的使用

详细用法见:python numpy.where()函数的用法_np.where()函数的用法-CSDN博客

1、实现元素位置的查找

        np.where(x>7)将会返回满足条件的元素索引

        x[np.where(x>7)]将会返回满足条件的元素值

2、实现条件选择的元素替换

        np.where(condition,x,0) 满足条件的仍然用原来的元素,不满足条件的则用0替换

        np.where(condition ,1,0)满足条件的用0,不满足用1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值