任意进制下的可逆素数是这样定义的:它自身是一个素数,当它转换为任意进制之后,把所有数字逆序,得到的新数字的值仍然是一个素数。比如,73在十进制下是一个素数,它在十进制下的逆37也是一个素数,那就称它是十进制下是一个可逆素数。
输入格式:
输入有多行,每行包括两个正整数,数N以及基R,其中N<100000, 1<D<=10, 遇到负数则退出。
输出格式:
对每一行输入,如果是可逆素数,则输出“Yes”,否则输出“No”
输入样例:
在这里给出一组输入。例如:
73 10
23 2
23 10
-2
输出样例:
在这里给出相应的输出。例如:
Yes
Yes
No
样例说明:23的二进制是10111,其逆为11101,对应的十进制数是29,所以是可逆素数。
解题思路:
一开始我以为只是把进制转换后得到的数值逆序,然后再判断这个逆序是不是素数就可以了,结果是要把得到的逆序再转换成原来的进制后再判断是否素数,接下来我的思路就很简单了:
写一个函数来判断是否是素数,再写一个函数来完成进制的来回转换,注意!!!根据题目给出的定义,一个数它本身就是一个素数,进制转换后得到的数还是一个素数,那么这个数才是任意进制下的可逆素数,所以不要忘了判断输入的数本身是否是一个素数!!!
AC代码 :
#include<bits/stdc++.h>
using namespace std;
//函数判断是否是素数
void shu(int x){
int flag = 0;
if(x==1){
cout<<"No"<<endl;
}else{
for(int i = 2;i<=sqrt(x);i++){
if(x%i==0){
flag = 1;
break;
}
}
if(flag==1){
cout<<"No"<<endl;
}else{
cout<<"Yes"<<endl;
}
}
}
//函数完成进制转换
int change(int a,int b){
int n[10005];
int k = 0,r = 0;
//得到第一次进制转换后的逆序
while(a!=0){
n[k++] = a%b;
a = a/b;
}
//把得到的逆序再转换成十进制
for(int i = k-1,j = 0;i>=0,j<k;i--,j++){
r += n[i]*pow(b,j);
}
return r;
}
int main(){
int a,b,r,flag = 0;
while(1){
scanf("%d",&a);
if(a<0)
break;
scanf("%d",&b);
//首先判断输入的数是否为一个素数
if(a==1){
flag = 1;
}else{
for(int i = 2;i<=sqrt(a);i++){
if(a%i==0){
flag = 1;
break;
}
}
}
//如果输入的数是一个素数了,再进行进制转换,然后判断进制转换后的数是否为一个素数
if(flag==0){
r = change(a,b);
shu(r);
}
}
}