7-4 任意进制下的可逆素数

任意进制下的可逆素数是这样定义的:它自身是一个素数,当它转换为任意进制之后,把所有数字逆序,得到的新数字的值仍然是一个素数。比如,73在十进制下是一个素数,它在十进制下的逆37也是一个素数,那就称它是十进制下是一个可逆素数。

输入格式:

输入有多行,每行包括两个正整数,数N以及基R,其中N<100000, 1<D<=10, 遇到负数则退出。

输出格式:

对每一行输入,如果是可逆素数,则输出“Yes”,否则输出“No”

输入样例:

在这里给出一组输入。例如:

73 10
23 2
23 10
-2

输出样例:

在这里给出相应的输出。例如:

Yes
Yes
No

样例说明:23的二进制是10111,其逆为11101,对应的十进制数是29,所以是可逆素数。

解题思路:

      一开始我以为只是把进制转换后得到的数值逆序,然后再判断这个逆序是不是素数就可以了,结果是要把得到的逆序再转换成原来的进制后再判断是否素数,接下来我的思路就很简单了:

        写一个函数来判断是否是素数,再写一个函数来完成进制的来回转换,注意!!!根据题目给出的定义,一个数它本身就是一个素数,进制转换后得到的数还是一个素数,那么这个数才是任意进制下的可逆素数,所以不要忘了判断输入的数本身是否是一个素数!!!

       

AC代码 :

#include<bits/stdc++.h>
using namespace std;

//函数判断是否是素数
void shu(int x){
	int flag = 0;
	if(x==1){
		cout<<"No"<<endl;
	}else{
		for(int i = 2;i<=sqrt(x);i++){
			if(x%i==0){
				flag = 1;
				break;
			}
		}
		if(flag==1){
			cout<<"No"<<endl;
		}else{
			cout<<"Yes"<<endl;
		}
	}
}

//函数完成进制转换
int change(int a,int b){
	int n[10005];
	int k = 0,r = 0;
//得到第一次进制转换后的逆序
	while(a!=0){
		n[k++] = a%b;
		a = a/b;
	}
//把得到的逆序再转换成十进制
	for(int i = k-1,j = 0;i>=0,j<k;i--,j++){
		r += n[i]*pow(b,j);
	}
	return r;
}


int main(){
	int a,b,r,flag = 0;
	while(1){
		scanf("%d",&a);
		if(a<0)
		break;
		
		scanf("%d",&b);

//首先判断输入的数是否为一个素数
		if(a==1){
			flag = 1;
		}else{
			for(int i = 2;i<=sqrt(a);i++){
				if(a%i==0){
					flag = 1;
					break;
				}
			}
		}
//如果输入的数是一个素数了,再进行进制转换,然后判断进制转换后的数是否为一个素数
		if(flag==0){
			r = change(a,b);
			shu(r);
		}	
	}
	
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值