城市 C 是一个非常繁忙的大都市,城市中的道路十分的拥挤,于是市长决定对其中的道路进行改造。城市 C 的道路是这样分布的:城市中有 n 个交叉路口,有些交叉路口之间有道路相连,两个交叉路口之间最多有一条道路相连接。这些道路是双向的,且把所有的交叉路口直接或间接的连接起来了。每条道路都有一个分值,分值越小表示这个道路越繁忙,越需要进行改造。但是市政府的资金有限,市长希望进行改造的道路越少越好,于是他提出下面的要求:
-
改造的那些道路能够把所有的交叉路口直接或间接的连通起来。
-
在满足要求 (1) 的情况下,改造的道路尽量少。
-
在满足要求 (1)、(2) 的情况下,改造的那些道路中分值最大的道路分值尽量小。
任务:作为市规划局的你,应当作出最佳的决策,选择那些道路应当被修建。
输入格式:
第一行有两个整数 n,m 表示城市有 n 个交叉路口,m 条道路。
接下来 m 行是对每条道路的描述,u,v,c 表示交叉路口 u 和 v 之间有道路相连,分值为 c 。
输出格式:
两个整数 s,max,表示你选出了几条道路,分值最大的那条道路的分值是多少。
输入样例:
4 5
1 2 3
1 4 5
2 4 7
2 3 6
3 4 8
输出样例:
3 6
代码:
#include<bits/stdc++.h>
using namespace std;
int n,m,fa[10005];
struct Node{
int u;
int v;
int c;
};
vector<Node>vec;
void init(int n){
for(int i = 0;i<n;i++){
fa[i] = i;
}
}
int find(int x){
if(fa[x]==x){
return x;
}else{
fa[x] = find(fa[x]);
return fa[x];
}
}
void merge(int x,int y){
int a = find(x);
int b = find(y);
if(a!=b){
fa[a] = b;
}
}
bool cmp(Node x,Node y){
return x.c<y.c;
}
int main(){
cin>>n>>m;
init(n);
for(int i = 0;i<m;i++){
Node node;
cin>>node.u>>node.v>>node.c;
vec.push_back(node);
}
int max = 0,cnt = 0;
sort(vec.begin(),vec.end(),cmp);
for(int i = 0;i<m;i++){
if(find(vec[i].u)!=find(vec[i].v)){
merge(vec[i].u,vec[i].v);
if(max<vec[i].c)
max = vec[i].c;
cnt++;
}
}
cout<<cnt<<" "<<max;
}