繁忙的都市

文章讲述了在一个繁忙城市C中,如何在有限资金下选择道路进行改造,以最少的改造数量确保所有交叉路口连通,同时优先选择分值最大的道路进行改造。利用并查集算法找到最优解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

城市 C 是一个非常繁忙的大都市,城市中的道路十分的拥挤,于是市长决定对其中的道路进行改造。城市 C 的道路是这样分布的:城市中有 n 个交叉路口,有些交叉路口之间有道路相连,两个交叉路口之间最多有一条道路相连接。这些道路是双向的,且把所有的交叉路口直接或间接的连接起来了。每条道路都有一个分值,分值越小表示这个道路越繁忙,越需要进行改造。但是市政府的资金有限,市长希望进行改造的道路越少越好,于是他提出下面的要求:

  1. 改造的那些道路能够把所有的交叉路口直接或间接的连通起来。

  2. 在满足要求 (1) 的情况下,改造的道路尽量少。

  3. 在满足要求 (1)、(2) 的情况下,改造的那些道路中分值最大的道路分值尽量小。

任务:作为市规划局的你,应当作出最佳的决策,选择那些道路应当被修建。

输入格式:

第一行有两个整数 n,m 表示城市有 n 个交叉路口,m 条道路。

接下来 m 行是对每条道路的描述,u,v,c 表示交叉路口 u 和 v 之间有道路相连,分值为 c 。

输出格式:

两个整数 s,max,表示你选出了几条道路,分值最大的那条道路的分值是多少。

输入样例:

4 5
1 2 3
1 4 5
2 4 7
2 3 6
3 4 8

输出样例:

3 6

代码: 

#include<bits/stdc++.h>
using namespace std;
int n,m,fa[10005];

struct Node{
	int u;
	int v;
	int c;
};

vector<Node>vec;

void init(int n){
	for(int i = 0;i<n;i++){
		fa[i] = i;
	}
}
int find(int x){
	if(fa[x]==x){
		return x;
	}else{
		fa[x] = find(fa[x]);
		return fa[x];
	}
}
void merge(int x,int y){
	int a = find(x);
	int b = find(y);
	if(a!=b){
		fa[a] = b;
	}
}
bool cmp(Node x,Node y){
	return x.c<y.c;
}
int main(){
	cin>>n>>m;
	init(n);
	for(int i = 0;i<m;i++){
		Node node;
		cin>>node.u>>node.v>>node.c;
		vec.push_back(node);
	}
	int max = 0,cnt = 0;
	sort(vec.begin(),vec.end(),cmp);
	for(int i = 0;i<m;i++){
		if(find(vec[i].u)!=find(vec[i].v)){
			merge(vec[i].u,vec[i].v);
			if(max<vec[i].c)
				max = vec[i].c;
			cnt++;
		}
	}
	cout<<cnt<<" "<<max;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值