LeetCode 热题 100 198. 打家劫舍

LeetCode 热题 100 | 198. 打家劫舍

大家好,今天我们来解决一道经典的动态规划问题——打家劫舍。这道题在 LeetCode 上被标记为中等难度,要求计算在不触动警报装置的情况下,一夜之内能够偷窃到的最高金额。问题的核心在于不能偷窃相邻的房屋,因此需要合理规划偷窃路径。


问题描述

给定一个非负整数数组 nums,代表每个房屋存放的金额。计算在不触动警报装置的情况下,能够偷窃到的最高金额。

示例 1:

输入:[1,2,3,1]
输出:4
解释:偷窃 1 号房屋 (金额 = 1) 和 3 号房屋 (金额 = 3)。
     偷窃到的最高金额 = 1 + 3 = 4。

示例 2:

输入:[2,7,9,3,1]
输出:12
解释:偷窃 1 号房屋 (金额 = 2)、3 号房屋 (金额 = 9) 和 5 号房屋 (金额 = 1)。
     偷窃到的最高金额 = 2 + 9 + 1 = 12。

提示:

  • 1 <= nums.length <= 100
  • 0 <= nums[i] <= 400

解题思路

核心思想
  1. 动态规划

    • 使用动态规划(DP)来解决这个问题。
    • 定义 dp[i] 为偷窃到第 i 个房屋时能够获得的最大金额。
    • 状态转移方程为:
      [
      dp[i] = \max(dp[i-1], dp[i-2] + nums[i])
      ]
      其中,dp[i-1] 表示不偷窃第 i 个房屋的最大金额,dp[i-2] + nums[i] 表示偷窃第 i 个房屋的最大金额。
  2. 边界条件

    • 如果只有一个房屋,最大金额为 nums[0]
    • 如果有两个房屋,最大金额为 max(nums[0], nums[1])
  3. 空间优化

    • 由于状态转移只依赖于前两个状态,可以使用两个变量代替数组,从而将空间复杂度优化到 O(1)。

Python代码实现

class Solution:
    def rob(self, nums):
        """
        :type nums: List[int]
        :rtype: int
        """
        if not nums:
            return 0
        if len(nums) == 1:
            return nums[0]
        
        prev1, prev2 = 0, 0
        for num in nums:
            temp = max(prev1, prev2 + num)
            prev2 = prev1
            prev1 = temp
        
        return prev1

代码解析

  1. 边界条件处理

    • 如果数组为空,返回 0。
    • 如果只有一个房屋,返回该房屋的金额。
  2. 动态规划状态转移

    • 使用两个变量 prev1prev2 分别表示当前房屋的前一个状态和前两个状态的最大金额。
    • 遍历数组,根据状态转移方程更新 temp,并逐步更新 prev1prev2
  3. 优化空间复杂度

    • 通过两个变量代替数组,将空间复杂度从 O(n) 降低到 O(1)。

复杂度分析

  • 时间复杂度:O(n),其中 n 是数组的长度。只需要遍历一次数组。
  • 空间复杂度:O(1),优化后只使用了常数级别的额外空间。

示例运行

示例 1
输入:[1,2,3,1]
输出:4
解释:偷窃 1 号房屋 (金额 = 1) 和 3 号房屋 (金额 = 3)。
     偷窃到的最高金额 = 1 + 3 = 4。
示例 2
输入:[2,7,9,3,1]
输出:12
解释:偷窃 1 号房屋 (金额 = 2)、3 号房屋 (金额 = 9) 和 5 号房屋 (金额 = 1)。
     偷窃到的最高金额 = 2 + 9 + 1 = 12。

总结

通过动态规划的方法,我们可以高效地解决打家劫舍问题。状态转移方程清晰易懂,且可以通过优化将空间复杂度降低到 O(1)。希望这篇题解对大家有所帮助,如果有任何问题,欢迎在评论区留言讨论!

关注我,获取更多算法题解和编程技巧!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值