7.线性回归

1.一元线性回归

一元线性回归研究的问题:

  • 两个变量之间的线性关系及其统计显著性
  • 两个变量:一个因变量,一个自变量
  • 给定自变量的值,预测因变量的值
    求解一元线性回归的最佳拟合直线
    在这里插入图片描述

2.相关系数与回归系数的关系

关系推导
在这里插入图片描述

3.一元线性回归的前提条件

  • 线性:自变量和因变量之间的关系是线性的(可使用散点图或残差图来检验)
    在这里插入图片描述
  • 残差(近似)服从均值为0的正态分布
  • 数据点围绕回归直线的变化程度基本不变
  • 残差围绕直线y=0的变化程度基本不变
    在这里插入图片描述

4.一元线性回归的SciPy实现

scipy.stats.linregress(
   x, y : 类数组格式的自变量、因变量,均为一维,也可以直接以k*2的二维数组格式提供
   注意:该命令的参数格式是自变量x在前!
)


返回结果:
slope : 回归系数b
intercept : 常数项a
r-value : 两个变量的相关系数
p-value : 回归系数的双侧检验
stderr : 回归系数的标准误

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

想成为数据分析师的开发工程师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值