一元线性回归(原理)

本文深入浅出地介绍了数据挖掘基础模型——一元线性回归,涵盖其基础原理、数学推导及R语言实现。通过最小二乘法确定最优直线,以使各点到直线的距离之和最小。文中还提供了R语言拟合线性回归模型及绘制散点图的示例代码。
摘要由CSDN通过智能技术生成

前言:

一元线性回归是数据挖掘的基础模型,其中包含了非常重要的数学回归的概念,是学习多元回归,广义线性回归的基础。本文主要讲解1)基础原理2)数学推导3)R语言演示,来介绍一元线性回归。

关键词:一元线性回归基础原理、最小二乘法、数学推导、R语言

整体思路:

根据已知点求一条直线,希望直线与各个点距离之和为最小,根据最小二乘法算出最小时直线的参数。

正文:

一、基础原理:假设已知铅笔销量和时代的关系,如下图散点:



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值