大模型算法面试题(一)

本系列收纳各种大模型面试题及答案。

1、介绍deberta中的两个优化点,disentangled attention和enhanced mask decoder

DeBERTa(Decoding-enhanced BERT with Disentangled Attention)是微软在2021年提出的一种改进的BERT模型,它在BERT的基础上引入了两个主要的优化点:解耦注意力机制(Disentangled Attention)和增强的掩码解码器(Enhanced Mask Decoder)。以下是对这两个优化点的详细介绍:

1. 解耦注意力机制(Disentangled Attention)

核心思想:
解耦注意力机制的核心在于将内容和位置信息进行解耦处理,分别计算它们的注意力权重,然后再将它们结合起来。这种机制使得模型能够更清晰地捕捉到词汇的语义和它们在句子中的相对位置关系。

具体实现:

  • 内容与位置解耦:在传统的BERT模型中,输入层的每个单词都使用一个向量来表示,该向量是其单词(内容)嵌入和位置嵌入的总和。而在DeBERTa中,每个单词使用两个向量分别表示其内容和位置,即每个单词有两个向量:内容向量和位置向量。
  • 注意力权重分解:在计算单词之间的注意力权重时,DeBERTa分别计算内容和位置的注意力分数,然后将它们结合起来。具体来说,单词对的注意力权重可以分解为四个部分:内容到内容(content-to-content)、内容到位置(content-to-position)、位置到内容(position-to-content)和位置到位置(position-to-position)。然而,由于DeBERTa使用相对位置嵌入,位置到位置项不提供太多附加信息,因此在实现中将其删除。

效果:
通过这种解耦机制,DeBERTa能够更精准地捕捉到词与词之间的依赖关系,从而在多个自然语言处理任务上表现出优越的性能。

2. 增强的掩码解码器(Enhanced Mask Decoder)

核心思想:
增强的掩码解码器通过在解码层中引入绝对位置信息来改进掩码语言模型(Masked Language Model, MLM)的性能。在传统的BERT模型中,MLM只考虑词语的相对位置信息,而DeBERTa则结合了绝对位置信息,使得模型在预测被掩盖的词语时更加准确。

具体实现:

  • 绝对位置信息的引入:在BERT的MLM任务中,模型会随机掩盖输入句子中的一些词语,然后让模型预测这些被掩盖的词语。此过程只考虑词语的相对位置。而在DeBERTa中,模型在预测被掩盖的词语时,不仅使用周围词语的信息和它们的相对位置信息,还利用这些词语在句子中的具体位置(即绝对位置信息)。
  • 综合计算:在解码过程中,DeBERTa会结合内容向量、相对位置向量和绝对位置向量来进行综合计算,从而预测出被掩盖的词语。

效果:
引入绝对位置信息后,DeBERTa在预测被掩盖的词语时能够利用更多的上下文信息,从而提高预测的准确性。这种改进使得DeBERTa在多个自然语言处理任务上表现出色。

综上所述,解耦注意力机制和增强的掩码解码器是DeBERTa模型中的两个重要优化点。它们分别通过解耦内容和位置信息以及引入绝对位置信息来改进模型的性能和效果,使得DeBERTa在多个自然语言处理任务上取得了显著的提升。

2、说出pre-norm和post-norm的区别

Pre-norm(前置归一化)和Post-norm(后置归一化)主要在归一化操作与函数映射(如Transformer中的Multi-Head Attention或FFN)的执行顺序上存在差异,这些差异进一步影响了模型的训练难易程度、梯度传播特性以及最终性能。以下是两者之间的详细区别:

一、执行顺序

  • Pre-norm:先进行归一化操作,再进行函数映射。其公式化表示通常为 (x_{t+1} = x_t + \text{Norm}(F_t(x_t))),其中 (F_t(\cdot)) 表示第 (t) 层的函数映射,(\text{Norm}(\cdot)) 表示归一化操作(如LayerNorm)。在这种方式下,输入 (x_t) 先经过归一化处理,然后再进入函数映射 (F_t)。
  • Post-norm:先进行函数映射,再进行归一化操作。其公式化表示通常为 (x_{t+1} = \text{Norm}(x_t + F_t(x_t)))。在这种方式下,输入 (x_t) 先经过函数映射 (F_t),然后再与原始输入 (x_t) 相加,最后进行归一化处理。

二、优缺点及影响

  1. 训练难易程度:
    • Pre-norm:由于归一化操作在函数映射之前进行,这有助于稳定输入分布,使得模型在训练初期更容易收敛。因此,Pre-norm通常被认为更容易训练。然而,对于深层网络,Pre-norm可能无法充分利用深层网络的表达能力,因为归一化操作可能削弱了来自深层的梯度信号。
    • Post-norm:虽然Post-norm在训练初期可能相对较难收敛,但它能够充分利用深层网络的表达能力,因为函数映射后的结果直接参与了归一化操作,保留了更多的梯度信息。因此,Post-norm在深层网络中的训练效果通常更好。
  2. 梯度传播特性:
    • Pre-norm:由于归一化操作在函数映射之前进行,它有助于保持梯度的稳定性,使得梯度能够更顺畅地传播到较浅的层。这有助于优化器更好地优化模型参数。
    • Post-norm:Post-norm中的归一化操作可能会导致梯度的指数衰减,尤其是在深层网络中。这可能会使得模型难以学习,因为较浅层的梯度信号可能会被严重削弱。然而,通过适当的初始化策略和训练技巧(如warm-up),可以缓解这一问题。
  3. 模型性能:
    • 在大多数情况下,Post-norm在深层网络中的性能优于Pre-norm。这是因为Post-norm能够更充分地利用深层网络的表达能力,并且在训练过程中能够逐渐学习到更有效的特征表示。然而,在某些特定情况下(如模型规模较小或训练数据有限时),Pre-norm可能表现出更好的性能。

综上所述,Pre-norm和Post-norm各有优缺点,并且在不同的应用场景下可能表现出不同的性能。在选择使用哪种归一化方式时,需要根据具体的任务需求、模型规模和训练数据等因素进行综合考虑。

3、layer normalization和batch normalization的区别

Layer Normalization(层归一化)和Batch Normalization(批量归一化)是深度学习中常用的两种归一化技术,它们的主要区别在于标准化的对象和方式。以下是两者之间的详细区别:

一、标准化对象

  1. Batch Normalization:
    • 对象:以特征为主体进行标准化。一个batch中所有样本的某个特征组成一组数,对这组数进行标准化。
    • 特点:依赖于批量大小(batch size),对同一批次(batch)内的数据进行归一化处理。
  2. Layer Normalization:
    • 对象:以样本为主体进行标准化。某个样本的所有特征(或通道)组成一组数,对这组数进行标准化。
    • 特点:不依赖于批量大小,对每个样本内的所有特征进行归一化处理。

二、操作方式

  1. Batch Normalization:
    • 步骤:
      • 计算当前批次内每个特征的均值和标准差。
      • 使用这些统计量对每个特征进行归一化处理。
      • 引入可学习的缩放因子(γ)和偏移量(β)进行重缩放和偏移,以恢复网络的表征能力。
    • 公式:x^=σ2+ϵ
    • ​x−μ​,y=γx^+β
  1. Layer Normalization:
    • 步骤:
      • 对每个样本内的所有特征(或通道)计算均值和标准差。
      • 使用这些统计量对每个样本的每个特征进行归一化处理。
      • 同样引入可学习的缩放因子(γ)和偏移量(β)进行重缩放和偏移。
    • 公式:与Batch Normalization类似,但统计量的计算是在样本内部进行的。

三、适用场景

  1. Batch Normalization:
    • 优势:
      • 加快训练速度。
      • 防止梯度爆炸或梯度消失。
      • 起到一定的正则化作用。
    • 适用场景:
      • 适用于批量大小相对固定且较大的情况。
      • 常用于卷积神经网络(CNN)等。
  2. Layer Normalization:
    • 优势:
      • 不依赖于批量大小,适用于批量大小很小或变化较大的情况。
      • 有助于提高模型的稳定性和收敛速度。
    • 适用场景:
      • 适用于序列模型,如循环神经网络(RNN)和Transformer等。
      • 在线学习或强化学习等任务中也非常有用。

四、总结

Layer Normalization和Batch Normalization在深度学习中各有优势,选择哪种归一化技术取决于具体的应用场景和需求。Batch Normalization依赖于批量大小,适用于批量大小相对固定且较大的情况;而Layer Normalization不依赖于批量大小,特别适用于批量大小不一或需要归一化单个样本的场景。

4、大模型实践场景有那些?ChatGLM、LlaMa、qwen 等大模型的区别?如何优化 Prompt ?

大模型实践场景:智能客服、翻译、文本生成、数字人等

ChatGLM、LlaMa、qwen 等大模型的区别:

从技术架构的角度分析ChatGLM、LlaMa、qwen等大模型的区别,我们可以从模型架构、训练方式、注意力机制、编码方式以及应用场景等多个维度进行探讨。以下是对这些大模型区别的详细分析:

1. ChatGLM

模型架构:
ChatGLM是一种基于Transformer的对话生成大模型,采用Encoder-Decoder架构。其中,Encoder负责理解输入对话,Decoder负责生成回复。ChatGLM通过引入Multi-Head Attention机制来提高生成的自然性和流畅性。

训练方式:
ChatGLM使用大规模的对话数据集进行训练,并通过微调来适应特定任务和领域。其预训练方式采用自回归的空白填充,并通过添加2D位置编码和打乱片段顺序来改进空白填充预训练。

注意力机制:
ChatGLM在模型架构上采用了前缀注意力(Prefix Attention)机制,即在输入序列的开头添加一个可学习的任务相关的前缀,然后使用该前缀和输入序列一起生成输出。这种机制使得模型在生成文本时能够关注到更全面的上下文信息。

编码方式:
ChatGLM在处理文本时,将文本数据转化为模型可处理的数字形式,并通过Transformer结构中的自注意力机制和跨注意力机制来理解和生成文本信息。

2. LlaMa

模型架构:
LlaMa是一种基于Transformer的开源LLM(大型语言模型),其模型架构同样基于Transformer Decoder,但可能引入了如GQA(Group Query Attention)等优化技术来替代传统的Multi-Head Attention,以提高模型的计算效率和性能。

训练方式:
LlaMa采用了高效的训练策略,如分布式训练和混合精度训练技术,以提高训练效率和减少计算资源消耗。同时,LlaMa也支持通过微调来适应不同的任务和领域。

注意力机制:
LlaMa在注意力机制上可能进行了优化和创新,如采用GQA来减少计算量并提高模型的并行处理能力。然而,其基本的注意力机制仍然基于Transformer的自注意力机制。

编码方式:
LlaMa将输入的token id转换为高维向量,并通过Transformer Decoder中的各种组件(如RMSNorm、Skip Connection、MHA/GQA、MLP等)进行编码和解码。

3. Qwen

模型架构:
Qwen是一个基于Transformer架构的预训练模型,其核心同样是Transformer结构。然而,关于Qwen的具体模型架构细节可能较少公开,但我们可以推测其也采用了类似的Encoder-Decoder架构或纯Decoder架构。

训练方式:
Qwen在大规模的语料库上进行了预训练,并通过微调来适应不同的自然语言处理任务。其训练方式可能也涉及到了分布式训练和混合精度训练等高效训练策略。

注意力机制:
Qwen同样采用了Transformer的自注意力机制来捕捉全局上下文信息,并可能引入了其他优化技术来提高模型的性能。

编码方式:
Qwen将输入的文本数据转换为高维向量,并通过Transformer结构中的各种组件进行编码和解码。其编码方式可能与ChatGLM和LlaMa类似,但具体实现细节可能有所不同。

总结

从技术架构的角度来看,ChatGLM、LlaMa和Qwen等大模型都基于Transformer结构,但在模型架构、训练方式、注意力机制和编码方式等方面存在一定的差异。这些差异使得它们在不同的应用场景和任务中表现出不同的优势和特点。例如,ChatGLM通过前缀注意力机制提高了对话生成的流畅性和自然性;LlaMa通过引入GQA等优化技术提高了模型的计算效率和性能;而Qwen则可能在特定的自然语言处理任务中表现出色。

如何优化Prompt

优化Prompt是提高大模型生成质量的关键步骤之一。以下是一些优化Prompt的技巧:

  1. 设定角色和目标:在Prompt中设定明确的角色和目标,可以帮助大模型更好地理解并生成符合期望的回答。例如,可以设定一个科学家的角色来解释某个科学概念。
  2. 提供具体示例:通过提供具体的示例或情境描述,可以帮助大模型更好地理解问题的背景和需求,从而生成更准确的回答。
  3. 使用关键词和约束条件:在Prompt中使用关键词和约束条件可以限定大模型的回答范围,使其在特定框架内生成回答。这有助于减少不相关或错误的回答。
  4. 构建思维链:对于复杂问题,可以通过构建思维链的方式将问题分解为一系列逻辑步骤或关键点,然后逐个提问。这有助于大模型更系统地处理复杂任务并生成更准确的回答。
  5. 调整语气和风格:根据需要调整Prompt的语气和风格,可以使生成的回答更符合特定场景或受众的需求。例如,在正式场合下可能需要使用更严谨的语言表达。

5、大模型微调的优化方法及区别

大模型微调是指通过调整预训练大模型的参数,使其更好地适应特定任务的过程。以下是大模型微调的几种优化方法及它们之间的区别:

大模型微调的优化方法

  1. 全参数微调(Full Fine-tuning)
    • 方法描述:对整个预训练模型的所有参数进行微调,包括所有的层和参数。
    • 适用场景:适用于任务和预训练模型之间存在较大差异,或者任务需要模型具有高度灵活性和自适应能力的情况。
    • 优缺点
      • 优点:能够全面优化模型,提升模型在特定任务上的性能。
      • 缺点:需要较大的计算资源和时间,且可能导致模型过拟合或遗忘预训练知识。
  2. 部分微调(Partial Fine-tuning)
    • 方法描述:只更新模型的顶层或少数几层,而保持预训练模型的底层参数不变。
    • 适用场景:目标任务与预训练模型之间有一定相似性,或者任务数据集较小的情况。
    • 优缺点
      • 优点:计算资源和时间消耗较少,能够保留预训练模型的通用知识。
      • 缺点:在某些情况下性能可能低于全参数微调。
  3. 参数高效微调(PEFT, Parameter-Efficient Fine-Tuning)
    • 方法描述:通过更新少量参数或引入额外的轻量级参数来实现微调,包括Prefix Tuning、Prompt Tuning、P-tuning、P-tuning v2、Lora等方法。
    • 具体方法
      • Prefix Tuning:在输入序列前添加可学习的连续任务特定向量(prefix),仅更新这些prefix参数。
      • Prompt Tuning:在输入序列中引入可学习的嵌入向量作为提示,这些向量在训练过程中更新以指导模型输出。
      • P-tuning:将输入序列分割成多个子序列,并使用额外的参数对每个子序列进行建模,以更好地捕捉局部信息。
      • P-tuning v2:P-tuning的升级版,引入更复杂的子序列分割策略和自注意力机制,增强模型对上下文的感知。
      • Lora:在模型的决定性层次中引入小型、低秩的矩阵来实现模型行为的微调,无需大幅度修改模型结构。
    • 优缺点
      • 优点:计算效率高,参数更新少,能够迅速适应新任务。
      • 缺点:在某些复杂任务上可能不如全参数微调效果好。

方法之间的区别

  1. 微调范围
    • 全参数微调涉及整个模型的所有参数,而部分微调仅针对顶层或少数几层。
    • PEFT方法则通过更新少量参数或引入额外参数来实现微调。
  2. 计算资源和时间
    • 全参数微调需要最多的计算资源和时间。
    • 部分微调和PEFT方法在计算资源和时间上更为高效。
  3. 适用场景
    • 全参数微调适用于需要高度灵活性和自适应能力的任务。
    • 部分微调适用于与预训练模型有一定相似性的任务。
    • PEFT方法适用于资源有限但需要快速适应新任务的场景。
  4. 性能表现
    • 在某些情况下,全参数微调可能获得最佳性能。
    • 部分微调和PEFT方法可能在性能上略逊于全参数微调,但具有更高的计算效率和灵活性。

综上所述,大模型微调的优化方法

  • 14
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值