目录
闲聊一下:今天本菜菜学了并查集,也是图论里面比较简单的一种数据结构,所以说必须要好好的看本菜菜的博客。
1.初始化
如何初始化一个并查集,每一个数一开始都是自己的祖先。
#define maxn 10010
int fa[maxn];
//初始化
void init(int n) {
for (int i = 1; i <= n; i++) {
fa[i] = i;
}
}
2.查找
如何找到自己的祖先
//查询1(时间复杂度很高,不推荐)
int find(int i) {
if (fa[i] == i) {
return i;
}
else {
return find(fa[i]);//递归查找祖先
}
}
3.进行合并
合并两个数,使得两个数祖先相同
void merge(int i, int j) {
int i_fa = find(i);
int j_fa = find(j);
fa[i_fa] = j_fa;//让i结点指向j的祖先
}
这时候就有了一个新的疑问,我如何去寻找那个祖先才能更快呢,不停的递归也行,但是数据少还行,数据多的时候时间复杂度很高,如何提升算法效率呢?引出了新的查找方法->
4.路径压缩
//进行路径压缩
int find(int i) {
if (fa[i] == i) {//递归出口
return i;
}
else {
fa[i] = find(fa[i]);//压缩路径
return fa[i];//返回父亲结点,在下一次搜索时减少时间
}
}
//等第二次搜索时,时间复杂度就会大大降低
用图的方式来描述一下子:
总之,模板就是这样子啦,下面是题目练习呀
5.题目练习
例1:P1551 亲戚
该题目借鉴麦克老师讲算法
题目分析:很简单的,就是利用上面的模板,将两个数据合并,如果他们的祖先是相同的,就证明他们有亲戚关系。
代码如下:
#include <iostream>
#define maxn 10010
using namespace std;
int fa[maxn];
//初始化
void init(int n) {
for (int i = 1; i <= n; i++) {
fa[i] = i;
}
}
//进行路径压缩
int find(int i) {
if (fa[i] == i) {//递归出口
return i;
}
else {
fa[i] = find(fa[i]);//压缩路径
return fa[i];//返回父亲结点,在下一次搜索时减少时间
}
}
//等第二次搜索时,时间复杂度就会大大降低
void merge(int i, int j) {
int i_fa = find(i);
int j_fa = find(j);
fa[i_fa] = j_fa;//让i结点指向j的祖先
}
int main()
{
int n, m;
int x, y;
int p;
cin >> n >> m;
init(n);//初始化该表
for (int i = 1; i <= m; i++) {
cin >> x >> y;
merge(x, y);//合并两个
}
cin >> p;
while (p--) {
cin >> x >> y;
if (find(x) == find(y)) {
cout << "Yes" << endl;
}
else {
cout << "No" << endl;
}
}
}
就是单纯的一个模板,简不简单!
可以尝试一下这道题:(几乎一模一样)P1551 亲戚 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)https://www.luogu.com.cn/problem/P1551
例2:P1536 村村通
题目描述:
某市调查城镇交通状况,得到现有城镇道路统计表。表中列出了每条道路直接连通的城镇。市政府 "村村通工程" 的目标是使全市任何两个城镇间都可以实现交通(但不一定有直接的道路相连,只要相互之间可达即可)。请你计算出最少还需要建设多少条道路?
输入格式:
输入包含若干组测试测试数据,每组测试数据的第一行给出两个用空格隔开的正整数,分别是城镇数目 nn 和道路数目 mm ;随后的 mm 行对应 mm 条道路,每行给出一对用空格隔开的正整数,分别是该条道路直接相连的两个城镇的编号。简单起见,城镇从 11 到 nn 编号。
注意:两个城市间可以有多条道路相通。
输出格式:
对于每组数据,对应一行一个整数。表示最少还需要建设的道路数目。
输入输出样例
输入 :
4 2
1 3
4 3
3 3
1 2
1 3
2 3
5 2
1 2
3 5
999 0
0
输出
1
0
2
998
说明/提示
数据规模与约定
对于 100\%100% 的数据,保证 1<=n<=1000.
P1536 村村通 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)https://www.luogu.com.cn/problem/P1536代码如下:
#include <iostream>
#include <cstring>
#define maxn 1001000
using namespace std;
int fa[maxn];
//初始化
void init(int n) {
for (int i = 1; i <= n; i++) {
fa[i] = i;
}
}
//进行路径压缩
int find(int i) {
if (fa[i] == i) {//递归出口
return i;
}
else {
fa[i] = find(fa[i]);//压缩路径
return fa[i];//返回父亲结点,在下一次搜索时减少时间
}
}
//等第二次搜索时,时间复杂度就会大大降低
void merge(int i, int j) {
int i_fa = find(i);
int j_fa = find(j);
fa[i_fa] = j_fa;//让i结点指向j的祖先
}
int main()
{
while (true) {
int ans = 0;
int n, m;
int x, y;
cin >> n >> m;
if (n == 0) {
return 0;
}
init(n);//初始化该表
for (int i = 1; i <= m; i++) {
cin >> x >> y;
merge(x, y);//合并两个
}
for (int i = 1; i <= n; i++) {
if (find(i)==i) {//查找每个元素的祖先
ans++;
}
}
cout << ans - 1 << endl;
}
}
注意:解释一下为什么ans要减1,因为上一步骤算的是一共有多少个没有关系的祖先,如果只有一个祖先的话,就输出0。
这就是我总结的并查集了,希望对读者有一定帮助的了解并查集的思想与模板还有应用,如果觉得有帮助,记得给本菜菜点个赞!