淼淼的并查集

目录

1.初始化

2.查找

3.进行合并

4.路径压缩

5.题目练习

例1:P1551 亲戚

例2:P1536 村村通


        闲聊一下:今天本菜菜学了并查集,也是图论里面比较简单的一种数据结构,所以说必须要好好的看本菜菜的博客。

1.初始化

如何初始化一个并查集,每一个数一开始都是自己的祖先。

#define maxn 10010
int fa[maxn];
//初始化
void init(int n) {
    for (int i = 1; i <= n; i++) {
        fa[i] = i;
    }
}

2.查找

如何找到自己的祖先

//查询1(时间复杂度很高,不推荐)
int find(int i) {
    if (fa[i] == i) {
        return i;
    }
    else {
        return find(fa[i]);//递归查找祖先
    }
}

3.进行合并

合并两个数,使得两个数祖先相同

void merge(int i, int j) {
    int i_fa = find(i);
    int j_fa = find(j);
    fa[i_fa] = j_fa;//让i结点指向j的祖先
}

        这时候就有了一个新的疑问,我如何去寻找那个祖先才能更快呢,不停的递归也行,但是数据少还行,数据多的时候时间复杂度很高,如何提升算法效率呢?引出了新的查找方法->

4.路径压缩

//进行路径压缩
int find(int i) {
    if (fa[i] == i) {//递归出口
        return i;
    }
    else {
        fa[i] = find(fa[i]);//压缩路径
        return fa[i];//返回父亲结点,在下一次搜索时减少时间
    }
}
//等第二次搜索时,时间复杂度就会大大降低

用图的方式来描述一下子:

 总之,模板就是这样子啦,下面是题目练习呀

5.题目练习

例1:P1551 亲戚

该题目借鉴麦克老师讲算法

 题目分析:很简单的,就是利用上面的模板,将两个数据合并,如果他们的祖先是相同的,就证明他们有亲戚关系。

 代码如下:

#include <iostream>
#define maxn 10010
using namespace std;

int fa[maxn];
//初始化
void init(int n) {
    for (int i = 1; i <= n; i++) {
        fa[i] = i;
    }
}
//进行路径压缩
int find(int i) {
    if (fa[i] == i) {//递归出口
        return i;
    }
    else {
        fa[i] = find(fa[i]);//压缩路径
        return fa[i];//返回父亲结点,在下一次搜索时减少时间
    }
}
//等第二次搜索时,时间复杂度就会大大降低
void merge(int i, int j) {
    int i_fa = find(i);
    int j_fa = find(j);
    fa[i_fa] = j_fa;//让i结点指向j的祖先
}
int main()
{
    int n, m;
    int x, y;
    int p;
    cin >> n >> m;
    init(n);//初始化该表
    for (int i = 1; i <= m; i++) {
        cin >> x >> y;
        merge(x, y);//合并两个
    }
    cin >> p;
    while (p--) {
        cin >> x >> y;
        if (find(x) == find(y)) {
            cout << "Yes" << endl;
        }
        else {
            cout << "No" << endl;
        }
    }
}

就是单纯的一个模板,简不简单!

可以尝试一下这道题:(几乎一模一样P1551 亲戚 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)https://www.luogu.com.cn/problem/P1551

例2:P1536 村村通

题目描述:

某市调查城镇交通状况,得到现有城镇道路统计表。表中列出了每条道路直接连通的城镇。市政府 "村村通工程" 的目标是使全市任何两个城镇间都可以实现交通(但不一定有直接的道路相连,只要相互之间可达即可)。请你计算出最少还需要建设多少条道路?

输入格式:

输入包含若干组测试测试数据,每组测试数据的第一行给出两个用空格隔开的正整数,分别是城镇数目 nn 和道路数目 mm ;随后的 mm 行对应 mm 条道路,每行给出一对用空格隔开的正整数,分别是该条道路直接相连的两个城镇的编号。简单起见,城镇从 11 到 nn 编号。

注意:两个城市间可以有多条道路相通。

输出格式:

对于每组数据,对应一行一个整数。表示最少还需要建设的道路数目。

输入输出样例

输入 :

4 2
1 3
4 3
3 3
1 2
1 3
2 3
5 2
1 2
3 5
999 0
0

输出 

1
0
2
998

说明/提示

数据规模与约定

对于 100\%100% 的数据,保证 1<=n<=1000.

P1536 村村通 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)https://www.luogu.com.cn/problem/P1536代码如下:

#include <iostream>
#include <cstring>
#define maxn 1001000
using namespace std;
int fa[maxn];
//初始化
void init(int n) {
    for (int i = 1; i <= n; i++) {
        fa[i] = i;
    }
}
//进行路径压缩
int find(int i) {
    if (fa[i] == i) {//递归出口
        return i;
    }
    else {
        fa[i] = find(fa[i]);//压缩路径
        return fa[i];//返回父亲结点,在下一次搜索时减少时间
    }
}
//等第二次搜索时,时间复杂度就会大大降低
void merge(int i, int j) {
    int i_fa = find(i);
    int j_fa = find(j);
    fa[i_fa] = j_fa;//让i结点指向j的祖先
}
int main()
{
    while (true) {
        int ans = 0;
        int n, m;
        int x, y;       
        cin >> n >> m;
        if (n == 0) {
            return 0;
        }
        init(n);//初始化该表
        for (int i = 1; i <= m; i++) {
            cin >> x >> y;
            merge(x, y);//合并两个
        }
        for (int i = 1; i <= n; i++) {
            if (find(i)==i) {//查找每个元素的祖先
                ans++;
            }
        }
        cout << ans - 1 << endl;
    }
}

   注意:解释一下为什么ans要减1,因为上一步骤算的是一共有多少个没有关系的祖先,如果只有一个祖先的话,就输出0。

        这就是我总结的并查集了,希望对读者有一定帮助的了解并查集的思想与模板还有应用,如果觉得有帮助,记得给本菜菜点个赞!

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

钟一淼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值