首先说我看过的题目吧!
- 那AC状况我也不多说了,详细的题解的话-.>
- 搜索练习1_钟一淼的博客-CSDN博客
- 搜索练习2(P1123取数游戏)_钟一淼的博客-CSDN博客
- 搜索练习2(P6207 [USACO06OCT] Cows on Skates G)_钟一淼的博客-CSDN博客
也会持续更新,总结就说我总结的几个模板吧(算是比较常见的几个,这周因为身体原因就只学习了DFS)
1.最简单的还是当属连通块问题:
整体框架:
- (我还是不太会写伪代码)所以拿例三来举例,首先输入一个二维矩阵,然后重点就是DFS两个变量记录当前位置,沿着那四个方向或者是那八个方向进行搜索,满足不越界,没有vis数组标记,满足题目中的条件,即可继续递归,在主函数中搜索满足题目中的点进行搜索,计数器++,即可求出联通块的个数。一般是会直接将扫描过的点标记成不满足条件的点,所以不需要进行回溯操作,相对来说就会比较好想一些。
例题分析(Lake Counting S):
void dfs(int a, int b) {
s[a][b] = '.';//直接将“w”转换成“.”,这样就可以不用回溯了
for (int i = 0; i < 8; i++) {
int x = a + f[i][0];//八个方向搜索。
int y = b + f[i][1];
//保证不越界,符合题目条件,没有被搜索过
if (x >= 0 && x < n && y >= 0 && y < m && s[x][y] == 'W' && vis[x][y] == 0) {
vis[x][y] = 1;
dfs(x, y);
}
}
}
int main()
{
cin >> n >> m;
memset(vis, 0, sizeof(vis));//初始化值
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
cin >> s[i][j];
}
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if (s[i][j] == 'W') {
dfs(i, j);
//计数器++
ans++;
}
}
}
cout << ans << endl;
}
2.计数问题(我暂时先这么总结)
例题:
- [NOIP2002 普及组] 选数 - 洛谷
- P1706 全排列问题 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)
- P1219 [USACO1.5]八皇后 (luogu.com.cn)
- 可能个人见解不同吧,我觉得这可以划分为一个类型的题目。
看我分析:
- 首先这类的题目一般需要写一个判断函数,或者在dfs中写一个判断函数,判断只有符合这种情况我才可以进行下一步的递归,否则我就进行回溯,(又或者是我直接不选这个数,这个条件,在符合条件中计数,看总共有多少种情况,还是我之前所说的,DFS的本质就是一条路走到黑,当然剪枝除外,所以它可以很清晰的描述出来每一条路的状况,特别是像我们需要看清每一个路的最终状态时后的这一种情况,就特别适合用DFS进行解决。
还是拿例一举一下例子:(废话不多说,上代码)
//判断函数
bool sunshu(int x) {
if (x == 0 || x == 1) {
return false;
}
for (int i = 2; i <= sqrt(x); i++) {
if (x % i == 0) {
return false;
}
}
return true;
}
void dfs(int x, int y) {
for (int j = y; j <= n; j++) {
if (vis[j] == true) {
vis[j] = false;//标记
sum += a[j];
if (x == m) {//符合条件
if (sunshu(sum)) {
ans++;//计数器++
}
}
else {//不符合不要紧,我继续向下找
dfs(x + 1, j + 1);
}
//千万不能忘记回溯
sum -= a[j];
vis[j] = true;
}
}
}
int main()
{
cin >> n >> m;
for (int i = 1; i <= n; i++) {
cin >> a[i];
vis[i] = true;
}
dfs(1, 1);
cout << ans << endl;
}
3.最优解问题
- 个人觉得这个题型才是最常见的一个题形,还可以与剪枝相互结合。
例题:
- P1123 取数游戏 - 洛谷 |
- P2392 kkksc03考前临时抱佛脚 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)
- [USACO2.1]健康的荷斯坦奶牛 Healthy Holsteins - 洛谷
- 背包问题DFS
说一下我的分析:
- 该类题型不加剪枝的情况下呢就是多了一个递归结束的出口,在这个出口处,不断更新最大值或者最小值,即最优解,符合递归出口条件的还是该写判断函数写判断函数,条件比较少的就直接判断,更新之后return,所以在这个时候写的dfs函数一般都会加上步数或者数量等来判断什么时候应该更新值(更新最优解了),如果不符合这个条件的话就进行下一次递归,不要忘记回溯即可。
还是举个栗子->取数游戏
void dfs(int l, int r, int sum) {
if (l > n) {//到达边界条件
if (ans < sum) {//sum记录的就是这条路的和
ans = sum;//如果有更优解就更新
}
return;
}
int ll = l;
int rr = r + 1;//搜索的下一个点
if (rr > m) {//搜索下一行
rr = 1;
ll += 1;
}
if (vis[l][r - 1] == 0 && vis[l - 1][r - 1] == 0 && vis[l - 1][r] == 0 && vis[l - 1][r + 1] == 0) {//四个方向没有扫描过,符合题目条件
vis[l][r] = 1;
dfs(ll, rr, sum + a[l][r]);
vis[l][r] = 0;
}
dfs(ll, rr, sum);//不选择这个点
}
int main()
{
cin >> t;
while (t--) {
cin >> n >> m;
ans = 0;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
cin >> a[i][j];
}
}
dfs(1, 1, 0);//从1,1点开始进行扫描,sum初始值为0
cout << ans << endl;
}
}
- 大体的总结流程就先到这里结束了,可以看我之后的搜索练习,里面都会讲解一些dfs的总结,感谢观看!