ACM第四周总结

本文详细介绍了深度优先搜索(DFS)在解决图论问题和组合优化问题中的应用,包括连通块问题、计数问题和最优解问题。通过实例分析,如细胞数量、选数问题和取数游戏,阐述了如何利用DFS及其剪枝策略找到解决方案,并提供了关键代码示例。同时,强调了DFS在描述路径和寻找最优解时的优势。
摘要由CSDN通过智能技术生成

首先说我看过的题目吧!

也会持续更新,总结就说我总结的几个模板吧(算是比较常见的几个,这周因为身体原因就只学习了DFS)

 1.最简单的还是当属连通块问题:  

整体框架:

  • (我还是不太会写伪代码)所以拿例三来举例,首先输入一个二维矩阵,然后重点就是DFS两个变量记录当前位置,沿着那四个方向或者是那八个方向进行搜索,满足不越界,没有vis数组标记,满足题目中的条件,即可继续递归,在主函数中搜索满足题目中的点进行搜索,计数器++,即可求出联通块的个数。一般是会直接将扫描过的点标记成不满足条件的点,所以不需要进行回溯操作,相对来说就会比较好想一些。

 例题分析(Lake Counting S):


void dfs(int a, int b) {
    s[a][b] = '.';//直接将“w”转换成“.”,这样就可以不用回溯了
    for (int i = 0; i < 8; i++) {
        int x = a + f[i][0];//八个方向搜索。
        int y = b + f[i][1];
        //保证不越界,符合题目条件,没有被搜索过
        if (x >= 0 && x < n && y >= 0 && y < m && s[x][y] == 'W' && vis[x][y] == 0) {
            vis[x][y] = 1;
            dfs(x, y);
        }
    }
}
int main()
{
    cin >> n >> m;
    memset(vis, 0, sizeof(vis));//初始化值
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
            cin >> s[i][j];
        }
    }
    
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
            if (s[i][j] == 'W') {
                dfs(i, j);
                //计数器++
                ans++;
            }
        }
    }
    cout << ans << endl;
}

2.计数问题(我暂时先这么总结)

 例题: 

看我分析:

  • 首先这类的题目一般需要写一个判断函数,或者在dfs中写一个判断函数,判断只有符合这种情况我才可以进行下一步的递归,否则我就进行回溯,(又或者是我直接不选这个数,这个条件,在符合条件中计数,看总共有多少种情况,还是我之前所说的,DFS的本质就是一条路走到黑,当然剪枝除外,所以它可以很清晰的描述出来每一条路的状况,特别是像我们需要看清每一个路的最终状态时后的这一种情况,就特别适合用DFS进行解决。

还是拿例一举一下例子:(废话不多说,上代码)

//判断函数
bool sunshu(int x) {
    if (x == 0 || x == 1) {
        return false;
    }
    for (int i = 2; i <= sqrt(x); i++) {
        if (x % i == 0) {
            return false;
        }
    }
    return true;
}
void dfs(int x, int y) {
    for (int j = y; j <= n; j++) {
        if (vis[j] == true) {
            vis[j] = false;//标记
            sum += a[j];
            if (x == m) {//符合条件
                if (sunshu(sum)) {
                    ans++;//计数器++
                }
            }
            else {//不符合不要紧,我继续向下找
                dfs(x + 1, j + 1);
            }
            //千万不能忘记回溯
            sum -= a[j];
            vis[j] = true;
        }
    }
}
int main()
{
    cin >> n >> m;
    for (int i = 1; i <= n; i++) {
        cin >> a[i];
        vis[i] = true;
    }
    dfs(1, 1);
    cout << ans << endl;
}

3.最优解问题

  • 个人觉得这个题型才是最常见的一个题形,还可以与剪枝相互结合。

例题:

说一下我的分析:

  • 该类题型不加剪枝的情况下呢就是多了一个递归结束的出口,在这个出口处,不断更新最大值或者最小值,即最优解,符合递归出口条件的还是该写判断函数写判断函数,条件比较少的就直接判断,更新之后return,所以在这个时候写的dfs函数一般都会加上步数或者数量等来判断什么时候应该更新值(更新最优解了),如果不符合这个条件的话就进行下一次递归,不要忘记回溯即可。 

还是举个栗子->取数游戏

void dfs(int l, int r, int sum) {
    if (l > n) {//到达边界条件
        if (ans < sum) {//sum记录的就是这条路的和
            ans = sum;//如果有更优解就更新

        }
        return;
    }
    int ll = l;
    int rr = r + 1;//搜索的下一个点
    if (rr > m) {//搜索下一行
        rr = 1;
        ll += 1;
    }
    if (vis[l][r - 1] == 0 && vis[l - 1][r - 1] == 0 && vis[l - 1][r] == 0 && vis[l - 1][r + 1] == 0) {//四个方向没有扫描过,符合题目条件
        vis[l][r] = 1;
        dfs(ll, rr, sum + a[l][r]);
        vis[l][r] = 0;
    }
    dfs(ll, rr, sum);//不选择这个点
}

int main()
{
    cin >> t;
    while (t--) {

        cin >> n >> m;
        ans = 0;
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= m; j++) {
                cin >> a[i][j];
            }
        }
        dfs(1, 1, 0);//从1,1点开始进行扫描,sum初始值为0
        cout << ans << endl;
    }
}
  • 大体的总结流程就先到这里结束了,可以看我之后的搜索练习,里面都会讲解一些dfs的总结,感谢观看! 

  

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

钟一淼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值