这次我选择了数论这个专题,所以废话不多说开始进行总结。
这次主要看的就是知乎上这一片算法竞赛中的初等数论,因为这篇文章涉及的内容还是比较广泛的,前言的素数筛选没什么可说的,已经很熟练的掌握了。
第二个专题和第三个专题也是基础的内容就不多赘述了,基本的质因数问题,
Problem D Multiply(2019 ACM- ICPC Asia Xuzhou Regional Contest E)记录一下,这个题目没有看懂,呜呜呜,这些类型的题目大多都是推导公式进行求解,说难挺难的,说容易其实很多题目依照高中所学的知识也可以推导出来,主要是不要把这类题目想的很难。
第三个专题就是关于欧拉函数的问题,比较重要的就是关于欧拉函数的一些性质,因为之前的时候也有看过一些博客,所以在性质方面也有一定的了解,但是也需要做题来更加清晰这一系列的性质(其中也有许多性质的推导),还有一个值得注意的点就是线性筛求欧拉函数,例题-》
Problem A. 仪仗队(Luogu P2158 [SDOI2008])
还有就是扩建的欧拉定理,P5091 【模板】扩展欧拉定理 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)
还有就是容斥定理,奇加偶减,还看了一些与背包相结合的例子,这个定理也是一种思想,所以这方面也练习了一些思维题目,主要是例题, RSA原理没看(不考我就没看嘞)
还有就是线性同余方程,还有中国剩余定理,比较值得注意的一个点就是同余方程,构造出来的解 x对于所有的同余方程都能成立,B、古代猪文 (P2480 [SDOI2010]),Problem C. 屠龙勇士(P4774 [NOI2018]),关于这个题目的推导可以再看一遍,高次同余方程还没有弄懂。
还有一部分扩展定理的应用以及例题,这种推导的思维还是需要多训练的
参考:
(10条消息) 【更新完毕】《算法竞赛中的初等数论》(ACM / OI / MO)前言、后记、目录索引(十五万字符的数论书)_繁凡さん的博客-CSDN博客_算法竞赛中的初等数论
《算法竞赛中的初等数论》(ACM / OI / MO)前言、后记、目录索引(十五万字符的数论书) - 知乎 (zhihu.com)
因为中间例题还是比较多的,所以没有特别的训练题目,但是大部分例题都有敲一下,想先理解一下别人的思路再开始做题会比较好一些,这就是我这周训练的内容,如有需要改进的地方,及时指教。