题目链接:用邮票贴满网格图
题干解读:
邮票能否在不旋转以及不覆盖占据格子的前提下将所有空格填满;
思路分析:
采用贪心的思路:遍历到每个空格时,判断能否以该空格为左上角贴入邮票,如果可以,则将邮票贴入,最后看是否所有空格处都有邮票覆盖。
难点:
如何判断某个点处能否贴入邮票呢?即如何判断该点右下方有一个邮票大小的空位呢?这个问题可以采用二维前缀和数组来解决(观察grid这个数组即可)。
如何判断某个点是否被邮票覆盖呢?这个问题可以用二维差分数组来解决。差分是前缀和的逆运算,也就是说如果我们用差分数组的前缀和来表示某个点有多少邮票覆盖时,当我们以i,j处为左上角贴了一张邮票,则仅需对差分数组进行如下操作:
同时这个题可以通过填充二维数组来简化代码:
class Solution {
public:
bool possibleToStamp(vector<vector<int>>& grid, int stampHeight, int stampWidth) {
int m = grid.size(), n = grid[0].size();
vector<vector<int>> sum(m + 2, vector<int>(n + 2, 0));
vector<vector<int>> diff(m + 2, vector<int>(n + 2, 0));
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
sum[i][j] = sum[i - 1][j] + sum[i][j - 1] - sum[i - 1][j - 1] + grid[i - 1][j - 1];
}
}
for (int i = 1; i + stampHeight - 1 <= m; i++) {
for (int j = 1; j + stampWidth - 1 <= n; j++) {
int x = i + stampHeight - 1;
int y = j + stampWidth - 1;
if (sum[x][y] - sum[x][j - 1] - sum[i - 1][y] + sum[i - 1][j - 1] == 0) {
diff[i][j]++;
diff[i][y + 1]--;
diff[x + 1][j]--;
diff[x + 1][y + 1]++;
}
}
}
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
diff[i][j] += diff[i - 1][j] + diff[i][j - 1] - diff[i - 1][j - 1];
if (diff[i][j] == 0 && grid[i - 1][j - 1] == 0) {
return false;
}
}
}
return true;
}
};