华为OD-2024年E卷-分苹果[100分] -- python

问题描述:


        A、B两个人把苹果分为两堆,A希望按照他的计算规则等分苹果Q,他的计算规则是按照二进制加法计算,并且不计算进位12+5=9(1100+0101=9),B的计算规则是十进制加法,包括正常进位,B希望在满足A的情况下获取苹果重量最多。

输入苹果的数量和每个苹果重量,输出满足A的情况下B获取的苹果总重量。
如果无法满足A的要求,输出-1。
数据范围
1<=总苹果数量<=20000
1<=每个苹果重量<=10000
输入描述
输入第一行是苹果数量:3
输入第二行是每个苹果重量:356
输出描述
输出第一行是B获取的苹果总重量:11

3
3 5 6
11

解题思路:

计算规则:

本题关键在于读懂A的计算规则:二进制且不进位:来把示例分开就好懂了

1259
高位101
110
000
低位011

可以发现:0 + 0 = 0;1 + 1 = 0(不进位);1 + 0 = 1;0 + 1 = 1。

这不就是个异或操作(^)的真值表吗?

等分:

第一步知道怎么计算了,接下来第二步:

A要求等分苹果,如何等分:总和/2吗,或者说列表部分【1】=列表部分【2】.

仍然针对 1 + 1 = 0(不进位)对它进行抽象 2 + 2 = 0?;3 + 3 = 0?;0 + 0 = 0?

OK,应该知道我要说什么了,和为0的两部分相等。反之,和不为0,则不能等分。

B最大

B的规则就是正常的十进制加法(正常进位),前面提到和为0的两部分相等:

也就是说只要把输入重量的列表分为两部分就行了:(重量最小的一个苹果)和(除去这个苹果其他所有苹果),第二部分就是B所能得到的最重的苹果。

python代码实现

n = int(input())
arr = list(map(int,input().split()))
sum = 0
#求和用‘^’,不是‘+=’
for i in arr:
    sum = sum ^ i
if sum != 0:
    print(-1)
else:
    arr.sort()
    ans = 0
#去除最小重量的苹果arr[0]
    for i in range(1,n):
        ans += arr[i]
    print(ans)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值