问题描述:
A、B两个人把苹果分为两堆,A希望按照他的计算规则等分苹果Q,他的计算规则是按照二进制加法计算,并且不计算进位12+5=9(1100+0101=9),B的计算规则是十进制加法,包括正常进位,B希望在满足A的情况下获取苹果重量最多。
输入苹果的数量和每个苹果重量,输出满足A的情况下B获取的苹果总重量。
如果无法满足A的要求,输出-1。
数据范围
1<=总苹果数量<=20000
1<=每个苹果重量<=10000
输入描述
输入第一行是苹果数量:3
输入第二行是每个苹果重量:356
输出描述
输出第一行是B获取的苹果总重量:11
3
3 5 6
11
解题思路:
计算规则:
本题关键在于读懂A的计算规则:二进制且不进位:来把示例分开就好懂了
数 | 12 | 5 | 9 |
高位 | 1 | 0 | 1 |
1 | 1 | 0 | |
0 | 0 | 0 | |
低位 | 0 | 1 | 1 |
可以发现:0 + 0 = 0;1 + 1 = 0(不进位);1 + 0 = 1;0 + 1 = 1。
这不就是个异或操作(^)的真值表吗?
等分:
第一步知道怎么计算了,接下来第二步:
A要求等分苹果,如何等分:总和/2吗,或者说列表部分【1】=列表部分【2】.
仍然针对 1 + 1 = 0(不进位)对它进行抽象 2 + 2 = 0?;3 + 3 = 0?;0 + 0 = 0?
OK,应该知道我要说什么了,和为0的两部分相等。反之,和不为0,则不能等分。
B最大
B的规则就是正常的十进制加法(正常进位),前面提到和为0的两部分相等:
也就是说只要把输入重量的列表分为两部分就行了:(重量最小的一个苹果)和(除去这个苹果其他所有苹果),第二部分就是B所能得到的最重的苹果。
python代码实现
n = int(input())
arr = list(map(int,input().split()))
sum = 0
#求和用‘^’,不是‘+=’
for i in arr:
sum = sum ^ i
if sum != 0:
print(-1)
else:
arr.sort()
ans = 0
#去除最小重量的苹果arr[0]
for i in range(1,n):
ans += arr[i]
print(ans)