目录
题目描述
长 L 米,宽 W 米的草坪里装有 n 个浇灌喷头。每个喷头都装在草坪中心线上(离两边各 W/2 米)。我们知道每个喷头的位置(离草坪中心线左端的距离),以及它能覆盖到的浇灌范围。
请问:如果要同时浇灌整块草坪,最少需要打开多少个喷头?
输入
输入包含若干组测试数据。
第一行一个整数 T 表示数据组数;
每组数据的第一行是整数 n、L 和 W;
接下来的 n行,每行包含两个整数,给出一个喷头的位置和浇灌半径(上面的示意图是样例输入第一组数据所描述的情况)。
输出
对每组测试数据输出一个数字,表示要浇灌整块草坪所需喷头数目的最小值。如果所有喷头都打开也不能浇灌整块草坪,则输出 −1 。
样例输入
3
8 20 2
5 3
4 1
1 2
7 2
10 2
13 3
16 2
19 4
3 10 1
3 5
9 3
6 1
3 10 1
5 3
1 1
9 1
样例输出
6
2
-1
提示
数据范围:
对于 100% 的数据,n≤15000。
代码
#include<bits/stdc++.h>
using namespace std;
int T;
int n, l, w, r, p, cnt;
struct app
{
double s, e;
}a[20015];
bool cmp(app x, app y)
{
return x.s < y.s;
}
void read()
{
cnt = 0;
scanf("%d%d%d", &n, &l, &w);
for (int i = 1; i <= n; i++)
{
scanf("%d%d", &p, &r);
if (r <= w / 2) continue; //直径无法完成w,没有用,直接不计入读入
cnt++;
a[cnt].s = p - sqrt((r * r) - (w * w / 4.0));
a[cnt].e = p + sqrt((r * r) - (w * w / 4.0));
}
}
void solve()
{
int ans = 0;
int i = 1;
bool flag = 1;
double t = 0;
while (t < l)
{
ans++;
double s = t;
for (; a[i].s <= s && i <= cnt; i++) //依次找能够覆盖L点的最大右端点
if (t < a[i].e) t = a[i].e;
if (t == s && s < l) //中间有断层,且未到达终点,判断无解
{
flag = 0;
printf("-1\n");
break;
}
}
if (flag) printf("%d\n", ans);
}
int main()
{
scanf("%d", &T);
while (T--)
{
read();
sort(a + 1, a + cnt + 1, cmp);
solve();
}
return 0;
}