三种方法求最大子列和

本文介绍了如何使用暴力遍历、递归分治以及在线处理三种方法来解决最大子序列和问题。代码示例展示了如何在C++中实现这些算法,包括如何找到序列中连续子序列的最大和。递归分治法通过将序列分为两部分,分别计算左右子序列的最大和,并考虑跨越分界线的子序列和,从而达到高效求解的目的。
摘要由CSDN通过智能技术生成

给定n个整数的序列{A1,A2…An},求函数 f ( i , j ) = m a x { 0 , ∑ k = i j A k } f(i,j)=max\{0,\sum_{k=i}^jA_k\} f(i,j)=max{0,k=ijAk}的最大值。

下图给出了方法二中递归求解最大子列和的过程。
在这里插入图片描述

#include <iostream>
using namespace std;

//方法1:暴力遍历求解
int maxSubseqSum1(int arr[], int len)
{
    int sum = 0;
    int newSum;
    for (int i = 0; i < len; i++)
    {
        newSum = 0;//这里的newSum=0是为了寻找新的起点的最大子列
        for (int j = i; j < len; j++)
        {
            newSum += arr[j];
            if (newSum > sum)
                sum = newSum;
        }
    }
    return sum;
}
//方法二:递归求解
int Max3(int A, int B, int C)
{ /* 返回3个整数中的最大值 */
    return A > B ? A > C ? A : C : B > C ? B : C; //即:A > B ? (A > C ? A : C) : B > C ? B : C;
}

int DivideAndConquer(int arr[], int left, int right)
{                                            /* 分治法求List[left]到List[right]的最大子列和 */
    int MaxLeftSum, MaxRightSum;             /* 存放左右子问题的解 */
    int MaxLeftBorderSum, MaxRightBorderSum; /*存放跨分界线的结果*/

    int LeftBorderSum, RightBorderSum;
    int center, i;

    if (left == right)
    { /* 递归的终止条件,子列只有1个数字 */
        if (arr[left] > 0)
            return arr[left];
        else
            return 0;
    }

    /* 下面是"分"的过程 */
    center = (left + right) / 2; /* 找到中分点 */
    /* 递归求得两边子列的最大和 */
    MaxLeftSum = DivideAndConquer(arr, left, center);
    MaxRightSum = DivideAndConquer(arr, center + 1, right);

    /* 下面求跨分界线的最大子列和 */
    MaxLeftBorderSum = 0;
    LeftBorderSum = 0;
    for (i = center; i >= left; i--)
    { /* 从中线向左扫描 */
        LeftBorderSum += arr[i];
        if (LeftBorderSum > MaxLeftBorderSum)
            MaxLeftBorderSum = LeftBorderSum;
    } /* 左边扫描结束 */

    MaxRightBorderSum = 0;
    RightBorderSum = 0;
    for (i = center + 1; i <= right; i++)
    { /* 从中线向右扫描 */
        RightBorderSum += arr[i];
        if (RightBorderSum > MaxRightBorderSum)
            MaxRightBorderSum = RightBorderSum;
    } /* 右边扫描结束 */

    /* 下面返回"治"的结果 */
    //MaxLeftBorderSum + MaxRightBorderSum即是跨越分界线的最大子列和,因为分别向左右扫描时他们的起点是相邻的所以通过相加的方式直接拼接在一起
    return Max3(MaxLeftSum, MaxRightSum, MaxLeftBorderSum + MaxRightBorderSum);
}

int maxSubseqSum2(int arr[], int len)
{ /* 保持与前2种算法相同的函数接口 */
    return DivideAndConquer(arr, 0, len - 1);
}
//方法三:在线处理
//在线处理的主要思想是对数列遍历一次,如果求得的子列和是一个负数就直接把此子列置为零,
//因为子列出现负数肯定使后面新的子列的值变小
int maxSubseqSum3(int arr[], int len)
{
    int sum = 0;
    int newSum = 0;
    for (int i = 0; i < len; i++)
    {
        newSum += arr[i];
        if (newSum > sum) //如果新的子列和比以前确定的子列和大,保存大的子列和值
            sum = newSum;
        if (newSum < 0)
            newSum = 0;
    }
    return sum;
}
int main()
{
    int arr[] = {1, 4, 2, 3, 5, 6};
    int len = sizeof(arr) / sizeof(arr[0]);
    //cout<<len<<endl;
    //int sum=maxSubseSum1(arr,len);
    //int sum = maxSubseqSum2(arr, len);
    int sum = maxSubseqSum3(arr, len);
    cout << sum << endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

是浩浩子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值