给定n个整数的序列{A1,A2…An},求函数 f ( i , j ) = m a x { 0 , ∑ k = i j A k } f(i,j)=max\{0,\sum_{k=i}^jA_k\} f(i,j)=max{0,∑k=ijAk}的最大值。
下图给出了方法二中递归求解最大子列和的过程。
#include <iostream>
using namespace std;
//方法1:暴力遍历求解
int maxSubseqSum1(int arr[], int len)
{
int sum = 0;
int newSum;
for (int i = 0; i < len; i++)
{
newSum = 0;//这里的newSum=0是为了寻找新的起点的最大子列
for (int j = i; j < len; j++)
{
newSum += arr[j];
if (newSum > sum)
sum = newSum;
}
}
return sum;
}
//方法二:递归求解
int Max3(int A, int B, int C)
{ /* 返回3个整数中的最大值 */
return A > B ? A > C ? A : C : B > C ? B : C; //即:A > B ? (A > C ? A : C) : B > C ? B : C;
}
int DivideAndConquer(int arr[], int left, int right)
{ /* 分治法求List[left]到List[right]的最大子列和 */
int MaxLeftSum, MaxRightSum; /* 存放左右子问题的解 */
int MaxLeftBorderSum, MaxRightBorderSum; /*存放跨分界线的结果*/
int LeftBorderSum, RightBorderSum;
int center, i;
if (left == right)
{ /* 递归的终止条件,子列只有1个数字 */
if (arr[left] > 0)
return arr[left];
else
return 0;
}
/* 下面是"分"的过程 */
center = (left + right) / 2; /* 找到中分点 */
/* 递归求得两边子列的最大和 */
MaxLeftSum = DivideAndConquer(arr, left, center);
MaxRightSum = DivideAndConquer(arr, center + 1, right);
/* 下面求跨分界线的最大子列和 */
MaxLeftBorderSum = 0;
LeftBorderSum = 0;
for (i = center; i >= left; i--)
{ /* 从中线向左扫描 */
LeftBorderSum += arr[i];
if (LeftBorderSum > MaxLeftBorderSum)
MaxLeftBorderSum = LeftBorderSum;
} /* 左边扫描结束 */
MaxRightBorderSum = 0;
RightBorderSum = 0;
for (i = center + 1; i <= right; i++)
{ /* 从中线向右扫描 */
RightBorderSum += arr[i];
if (RightBorderSum > MaxRightBorderSum)
MaxRightBorderSum = RightBorderSum;
} /* 右边扫描结束 */
/* 下面返回"治"的结果 */
//MaxLeftBorderSum + MaxRightBorderSum即是跨越分界线的最大子列和,因为分别向左右扫描时他们的起点是相邻的所以通过相加的方式直接拼接在一起
return Max3(MaxLeftSum, MaxRightSum, MaxLeftBorderSum + MaxRightBorderSum);
}
int maxSubseqSum2(int arr[], int len)
{ /* 保持与前2种算法相同的函数接口 */
return DivideAndConquer(arr, 0, len - 1);
}
//方法三:在线处理
//在线处理的主要思想是对数列遍历一次,如果求得的子列和是一个负数就直接把此子列置为零,
//因为子列出现负数肯定使后面新的子列的值变小
int maxSubseqSum3(int arr[], int len)
{
int sum = 0;
int newSum = 0;
for (int i = 0; i < len; i++)
{
newSum += arr[i];
if (newSum > sum) //如果新的子列和比以前确定的子列和大,保存大的子列和值
sum = newSum;
if (newSum < 0)
newSum = 0;
}
return sum;
}
int main()
{
int arr[] = {1, 4, 2, 3, 5, 6};
int len = sizeof(arr) / sizeof(arr[0]);
//cout<<len<<endl;
//int sum=maxSubseSum1(arr,len);
//int sum = maxSubseqSum2(arr, len);
int sum = maxSubseqSum3(arr, len);
cout << sum << endl;
return 0;
}