跟随祖师爷奥本海姆学的。
1. 线性时不变系统
线性时不变系统具有这样的特性: 对输入的线性组合的响应是单个响应的相同的线性组合。时不变性的性质表明系统对时间原点不敏感。更具体地说,如果输入在时间上移动了一定的量,那么输出也简单地移动了相同的量(系统对输入的处理不随时间变化)。
线性的重要性体现在,对于系统输入信号可以分解为一些线性组合的基本的输入信号,那么响应可以被构造成对应每一个基本输入的线性组合。
信号(或函数)可以以多种方式分解为基本信号的线性组合。例如,我们可以考虑用多项式形式表示一个函数的泰勒级数展开式。然而,在我们处理信号和系统的背景下,在展开式中选择基本信号是特别重要的,以便在某种意义上响应易于计算。对于线性和时不变的系统,有两个特别有用的选择来处理这些基本信号:延迟脉冲和复指数。
由于任意序列可以表示为延迟脉冲的线性组合,因此线性时不变系统的输出可以表示为系统对延时脉冲响应的相同线性组合。具体来说,由于时不变性,一旦已知一个脉冲在任意时间点的响应,那对任意时间点下一个脉冲的响应也是已知的。
(看完全文再来看这段)在连续时间条件下进行卷积时,过程与离散时间条件下基本相同,只是在连续时间条件下,信号首先被表示为窄矩形的线性组合(基本上是时间函数的阶梯逼近)。当这些矩形的宽度变得无穷小时,它们的行为就像脉冲。这些矩形的叠加形成极限形式的原始时间函数变成了一个积分,将一个线性时不变系统的输出表示为延时脉冲响应的线性组合也变成了一个积分。得到的积分被称为卷积积分,在其性质上类似于离散时间信号和系统的卷积和。
2. 单位脉冲信号
2.1 离散时间信号
离散时间单位阶跃和单位脉冲序列。
2.2 连续时间信号
将连续时间单位脉冲解释为具有单位面积且脉冲宽度接近零的矩形脉冲的极限形式。
3. 离散时间信号的输出响应
3.1 输入信号的分解
将一个一般的离散信号表示为加权的,延迟的单位脉冲的叠加。首先要明确这里的 δ [ n − k ] \delta[n-k] δ[n−k]是什么意思——延时k时刻的脉冲函数,其在k时刻值为1,其他时刻值为0。
3.2 输入信号的响应
这里的信号组合是指将刚才分解的信号的响应进行求和,即将系统输出表示为延时单位脉冲响应的加权和。
此时的x[0],x[1],x[-1],x[-2]相当于一个权重,下图中分别对应0时刻,1时刻…的乘以权重的脉冲响应,对于线性时不变系统的输出就是它们之和。至于为什么某一时刻的脉冲响应是很多点,这主要是因为研究的系统是记忆系统。
下图中 δ [ n − k ] \delta[n-k] δ[n−k]的响应为 h k [ n ] h_k[n] hk[n],即从第 k k k时刻开始的响应函数,一般记作 h [ n − k ] h[n-k] h[n−k]。
3.3 小结
对于x[n]这个离散时间信号,我们求其响应的过程分解成了一系列延时脉冲的线性组合,从而得到线性时不变系统的响应表达式,这称为卷积;如果把输入分解成复指数的线性组合,就对应着傅里叶分析。
这就完成了一个转化,把求一个陌生输入信号响应的过程转化成了我们熟悉的求延时单位脉冲响应的加权和的问题。
4. 连续时间信号的输出响应
4.1 输入信号的分解
将连续时间信号近似为加权、延迟、矩形脉冲的线性组合。图中的 δ Δ [ t ] \delta_\Delta[t] δΔ[t]意思是,在 Δ \Delta Δ这个微小区间内, δ [ t ] \delta[t] δ[t]的函数表达式。
关键是如何理解下图中的 t t t和 τ τ τ,可以看到 τ τ τ对应着积分前的 k Δ k\Delta kΔ,所以 δ [ t − τ ] \delta[t-τ]