2018全国大学生建模A题(从零开始)

作者: ls_本性
专题简介:本文章将从零开始学习并完成2018年全国大学生数学建模的A题,由于本人也是新手第一次接触偏微分方程题目(可能会有很多错误,希望大家指出)
😊😊😊如果觉得文章不错或能帮助到你学习,可以点赞👍收藏📁评论📒+关注哦!👍👍
本文末尾有惊喜哦!

背景知识

热传导方程的导出(控制方程)

热传导方程是基于傅里叶定律和能量守恒定律推导

傅里叶定律

热流密度(q):单位时候内通过截面面积S的截面所传递的热量Q。

傅里叶定律:单位时候内通过截面面积S的截面所传递的热量Q正比于垂直该截面方向上的温度变化率.

温度: u ( x , y , z , t ) u(x,y,z,t) u(x,y,z,t)表示一点 ( x , y , z ) (x,y,z) (x,y,z)在t时刻的温度

对于x,y,z方向傅里叶定律:
           q x = − λ ∂ u ∂ x {q_x} = - \lambda \frac{{\partial u}}{{\partial x}} qx=λxu     q y = − λ ∂ u ∂ y {q_y} = - \lambda \frac{{\partial u}}{{\partial y}} qy=λyu     q z = − λ ∂ u ∂ z {q_z} = - \lambda \frac{{\partial u}}{{\partial z}} qz=λzu
对于整体:

q → = − λ ∇ \overrightarrow q = - \lambda \nabla q =λ
其中 λ \lambda λ表示热传导率, ∇ \nabla 为散度
我们假定:

  1. 该物体三维各项同性的均值介质( λ \lambda λ都相同)
  2. 温度变化不剧烈(温度不会影响 λ \lambda λ
微元法推导方程

我们选取物题的极小一部分进行分析。
沿x方向流过的单位时间热量:
          ( q x ∣ x − q x ∣ x + Δ x ) Δ y Δ z ({{q}_{x}}{{|}_{x}}-{{q}_{x}}{{|}_{x+\Delta x}})\Delta y\Deltaz (qxxqxx+Δx)ΔyΔ
该式子表示单位时间在 x x x方向流入的热量减去在 x + Δ x x+\Delta x x+Δx流出的热量

对该公式变形转化成偏导格式:
           ( q x ∣ x − q x ∣ x + Δ x ) Δ y Δ z Δ x Δ x \frac{({{q}_{x}}{{|}_{x}}-{{q}_{x}}{{|}_{x+\Delta x}})\Delta y\Delta z\Delta x}{\Delta x} Δx(qxxqxx+Δx)ΔyΔzΔx ⟶ \longrightarrow − ∂ q x ∂ x Δ x Δ y Δ z -\frac{\partial {{q}_{x}}}{\partial x}\Delta x\Delta y\Delta z xqxΔxΔyΔz
对于y,z方向同理,得到流过单位时间整个物体的热量:
    − ( ∂ q x ∂ x + ∂ q y ∂ y + ∂ q z ∂ z ) Δ x Δ y Δ z = − ∇ ⋅ q →   Δ x Δ y Δ z -(\frac{\partial {{q}_{x}}}{\partial x}+\frac{\partial {{q}_{y}}}{\partial y}+\frac{\partial {{q}_{z}}}{\partial z})\Delta x\Delta y\Delta z=-\nabla \cdot \overset{\to }{\mathop{q}}\,\Delta x\Delta y\Delta z (xqx+yqy+zqz)ΔxΔyΔz=qΔxΔyΔz
其中 ∇ ⋅ q →   \nabla \cdot \overset{\to }{\mathop{q}}\, q表示 q →   \overset{\to }{\mathop{q}}\, q的散度。

定义 F ( x , y , z , t ) F(x,y,z,t) F(x,y,z,t)为单位时间,单位体积,物体自身的产热量。

由能量守恒定律得:
   − ∇ ⋅ q →   Δ x Δ y Δ z Δ t + F Δ x Δ y Δ z Δ t = c ρ Δ x Δ y Δ z Δ u -\nabla \cdot \overset{\to }{\mathop{q}}\,\Delta x\Delta y\Delta z\Delta t+F\Delta x\Delta y\Delta z\Delta t=c\rho \Delta x\Delta y\Delta z\Delta u qΔxΔyΔzΔt+FΔxΔyΔzΔt=cρΔxΔyΔzΔu
其中 c c c为比热容, ρ \rho ρ为密度, Δ u \Delta u Δu为温度改变量
对等式右边的式子乘以 Δ t \Delta t Δt除以 Δ t \Delta t Δt,然后对整个式子约分得:
        − ∇ ⋅ q →   + F = c ρ ∂ u ∂ t -\nabla \cdot \overset{\to }{\mathop{q}}\,+F=c\rho \frac{\partial u}{\partial t} q+F=cρtu
其傅里叶定律得到的方程代入得:
         λ ∇ 2 + F = c ρ ∂ u ∂ t \lambda {{\nabla }^{2}}+F=c\rho \frac{\partial u}{\partial t} λ2+F=cρtu
其中 ∇ 2 {{\nabla }^{2}} 2表示拉普拉多算子
最后对该等式变形得到最终的热传导控制方程:
           ∂ u ∂ t − k ∇ 2 = f \frac{\partial u}{\partial t}-k{{\nabla }^{2}}=\text{f} tuk2=f
其中 k = λ c ρ k=\frac{\lambda}{c\rho} k=cρλ表示为扩散系数, f = F c ρ f=\frac{F}{c\rho} f=cρF
一般来说若物理内部不会产生,则该方程退化为:
               k ∇ 2 = ∂ u ∂ t k{{\nabla }^{2}}=\frac{\partial u}{\partial t} k2=tu
直观理解为,温度的改变量与其内部某点位置的四面八方都有关(这里可能解释的有些模糊,后面会对一维热传导直观理解用差分进一步的解释)

定解条件

对于偏微分方程只知道其控制方程的话该方程存在无穷多解,要得到其唯一解,还需要对其加上定解条件。

初始条件

相比常微分方程其初始条件是一个具体的数值而言,我们需要注意偏微分方程其初始条件应该是一个函数

eg: 方程 ∂ u ( x , y ) ∂ 2 x = 0 \frac{\partial u(x,y)}{{{\partial }^{2}}x}=0 2xu(x,y)=0其通解之一为: u = c 1 ( y ) + x c 2 ( y ) u={{c}_{1}}(y)+x{{c}_{2}}(y) u=c1(y)+xc2(y),其中 c 1 ( y ) {c}_{1}(y) c1(y), c 2 ( y ) {c}_{2}(y) c2(y)为两个关于 y y y的函数。

边界条件
  1. 第一类边界条件又称狄利克雷条件,规定了所研究物理量在边界上的数值,对于热传导方程而言其物理意义为:规定了物体边界上的温度值。
    u ( x , y , z , t ) ∣ x 0 , y 0 , z 0 = f ( x 0 , y 0 , z 0 , t ) u(x,y,z,t){{|}_{{{x}_{0}},{{y}_{0}},{{z}_{0}}}}=f({{x}_{0}},{{y}_{0}},{{z}_{0,}}t) u(x,y,z,t)x0,y0,z0=f(x0,y0,z0,t)其中 ( x 0 , y 0 , z 0 ) ({x}_{0},{y}_{0},{z}_{0}) (x0,y0,z0)是边界点的坐标, f f f是时间 t t t的已知函数。
  2. 第二类边界条件又称诺依曼条件,规定了所研究物理量在边界外法线方向上方向导数的数值,对于热传导方程而言其物理意义为:规定了物体边界上的热流密度(单位时间单位面积的热流量)。

谈到热流密度我们就应该想到傅里叶定律,在傅里叶定律中热流密度的方向是由高温流向低温,而并非物理量的法向方向。

定义温度变化的梯度方向为: ∂ u ∂ n = ∇ n → \frac{\partial u}{\partial n}=\nabla \overrightarrow{n} nu=n

其中 n → \overrightarrow{n} n 为物体边界的法向向量, ∇ \nabla 为散度
在结合傅里叶定律,可得:
− λ ∂ u ∂ n ∣ x 0 , y 0 , z 0 = ψ ( x 0 , y 0 , z 0 , t ) -\lambda\frac{\partial u}{\partial n}{{|}_{{{x}_{0}},{{y}_{0}},{{z}_{0}}}}=\psi ({{x}_{0}},{{y}_{0}},{{z}_{0,}}t) λnux0,y0,z0=ψ(x0,y0,z0,t)
其中 ( x 0 , y 0 , z 0 ) ({x}_{0},{y}_{0},{z}_{0}) (x0,y0,z0)是边界点的坐标, f f f是时间 t t t的已知函数。

  1. 第三类边界条件又称混合边界条件,规定了所研究物理量及其外法向导数的线性组合在边界上的数值。对于热传导方程第三类边界条件又称牛顿冷却定律,其表示:单位时间单位面积的散热量与物体边界温度和外界温度只差成正比。
    − λ ∂ u ∂ n ∣ x 0 , y 0 , z 0 = h ( u ∣ x 0 , y 0 , z 0 − u 外界 ) -\lambda\frac{\partial u}{\partial n}{{|}_{{{x}_{0}},{{y}_{0}},{{z}_{0}}}}=h(u{{|}_{{{x}_{0}},{{y}_{0}},{{z}_{0}}}}-{{u}_{外界}}) λnux0,y0,z0=h(ux0,y0,z0u外界)
    其中 h h h为转化系数

模型建立

我们假设防护服每一层:三维各项同性的均值介质。那么我们便可以把这个三维问题抽象成一维问题来解决。
在这里插入图片描述
这里给出其一维简化图,由于四层材料,厚度不同,故我们需要对每二层进行一一讨论,这里我们在将其简化为二层材料,来建立二层耦合介质温度分布模型,再将其推广到四层。

二层耦合介质温度分布模型

在这里插入图片描述

控制方程

对于介质a,b,其满足热传导的一般方程:
在这里插入图片描述

耦合条件(a,b接触的边界条件)
  • 由于a,b介质边界处于同一处,故在稳定情况下(温度没有发生急剧变化时)认为二介质边界温度相同:
    u 1 ∣ d 1 = u 2 ∣ d 1 {{u}_{1}}{{|}_{d}}_{_{1}}={{u}_{2}}{{|}_{d}}_{_{1}} u1d1=u2d1
  • 边界的热流密度(单位时间单位面积热流量)相同:
    λ 1 ∂ u ∂ n 12 ∣ d 1 = λ 2 ∂ u ∂ n 21 ∣ d 1 {{\lambda }_{1}}\frac{\partial u}{\partial {{n}_{12}}}{{|}_{d1}}={{\lambda }_{2}}\frac{\partial u}{\partial {{n}_{21}}}{{|}_{d1}} λ1n12ud1=λ2n21ud1
    其中 n 12 {n}_{12} n12表示由介质a的法向方向(由介质a指向外部), n 21 {n}_{21} n21表示由介质b的法向方向(由外部指向介质b)
初始条件

由于人穿着防护服,故防护服在 t = 0 t=0 t=0时刻的温度近似等于人体温度,即:
{ u 1 ( x , 0 ) = 37     x ∈ [ 0 , d 1 ] u 2 ( x , 0 ) = 37     x ∈ [ d 1 , d 2 ] \left\{ \begin{align} & {{u}_{1}}(x,0)=37    x\in [0,{{d}_{1}}] \nonumber \\ & {{u}_{2}}(x,0)=37   x\in [{{d}_{1}},{{d}_{2}}] \nonumber \end{align} \right. {u1(x,0)=37   x[0,d1]u2(x,0)=37   x[d1,d2]

边界条件
  • 左边界条件:左侧边界直接与外界接触,故其温度与外界恒定温度相同:
                  u 1 ( 0 , t ) = 75 {{u}_{1}}(0,t)=75 u1(0,t)=75   t ∈ [ 0 , T ] t\in [0,T] t[0,T]

  • 右边界条件:介质b右侧边界温度高于人体温度,故与人皮肤发生热量交换,满足牛顿冷却定律
    − λ 2 ∂ u ∂ n 22 = h ( u 2 − u 人 ) -{{\lambda }_{2}}\frac{\partial u}{\partial {{n}_{22}}}=h({{u}_{2}}-{{u}_{人}}) λ2n22u=h(u2u)
    由于此处空气对流很弱,故不考虑热对流。

  • h h h的确定:查文献可知h的范围是 [ 5 , 25 ] [5,25] [5,25]。然后采用变步长法去枚举最佳的转换系数

整体模型建立

在这里插入图片描述

控制方程

{ ∂ u i ∂ t = a i 2 ∂ 2 u i ∂ x 2 x ∈ ⋃ i = 1 4 [ L i − 1 , L i ] , L 0 = 0 a i 2 = λ i c i ρ i        i = 1 , 2 , 3 , 4 \left\{ \begin{align} & \frac{\partial {{u}_{i}}}{\partial t}={{a}_{i}}^{2}\frac{{{\partial }^{2}}{{u}_{i}}}{\partial {{x}^{2}}}x\in \bigcup\limits_{i=1}^{4}{[{{L}_{i-1}},{{L}_{i}}],{{L}_{0}}=0}\nonumber \\ & {{a}_{i}}^{2}=\frac{{{\lambda }_{i}}}{{{c}_{i}}{{\rho }_{i}}}        i=1,2,3,4 \nonumber\\ \end{align} \right. tui=ai2x22uixi=14[Li1,Li],L0=0ai2=ciρiλi      i=1,2,3,4
对四个不同介质建立不同的控制方程

耦合条件
  • 对一二,二三,三四边界建立耦合方程:
    { λ i ∂ u i ∂ x ∣ Γ i = λ i + 1 ∂ u i + 1 ∂ x ∣ Γ i + 1    i = 1 , 2 , 3 u i ∣ Γ i = u i + 1 ∣ Γ i + 1         i = 1 , 2 , 3 \left\{ \begin{align} & {{\lambda }_{i}}\frac{\partial {{u}_{i}}}{\partial x}{{|}_{\Gamma i}}={{\lambda }_{i+1}}\frac{\partial {{u}_{i+1}}}{\partial x}{{|}_{{{\Gamma }_{i+1}}}}  i=1,2,3\nonumber \\ & {{u}_{i}}{{|}_{\Gamma i}}={{u}_{i+1}}{{|}_{\Gamma i+1}}       i=1,2,3\nonumber \\ \end{align} \right. λixuiΓi=λi+1xui+1Γi+1  i=1,2,3uiΓi=ui+1Γi+1       i=1,2,3
    此处为什么是对 x x x偏导而不是对 n n n偏导,这里我们把边界处近似的当成一条指线,且我们在这里只考虑标量不考虑矢量,故将对 n n n的偏导退化为对 x x x的偏导
初值条件

u i ( x , 0 ) = 37      i = 1 , 2 , 3 , 4 {{u}_{i}}(x,0)=37    i=1,2,3,4 ui(x,0)=37    i=1,2,3,4
防护服初始温度37度

边界条件
  • 左边界条件:左侧边界直接与外界接触,故其温度与外界恒定温度相同:
                  u 1 ( 0 , t ) = 75 {{u}_{1}}(0,t)=75 u1(0,t)=75   t ∈ [ 0 , T ] t\in [0,T] t[0,T]

  • 右边界条件:介质b右侧边界温度高于人体温度,故与人皮肤发生热量交换,满足牛顿冷却定律
    − λ 2 ∂ u ∂ n 22 = h ( u 4 ( L 4 , t ) − u 人 ( L 4 , t ) ) -{{\lambda }_{2}}\frac{\partial u}{\partial {{n}_{22}}}=h({{u}_{4}}({L}_{4},t)-{{u}_{人}({L}_{4},t)}) λ2n22u=h(u4(L4,t)u(L4,t))

  • 3
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值