数字水印 | 图像标准化论文:Digital Watermarking Robust to Geometric Distortions(二)



🤖原文: Digital Watermarking Robust to Geometric Distortions

🤖前言: 这是一篇 2005 年的 SCI 一区 + CCF-A,但是网上关于它的讲解貌似挺少的。文中提出了两种数字水印方案,但是我只关注第一种方案中的图像标准化技术。由于本人很菜,因此可能存在翻译或者理解的错误,请各位指正!



C 变换参数的确定

在本节中,我们展示了如何确定与变换相关的参数,使它们达到各自的标准化目标。



矩阵 A x = ( 1 β 0 1 ) \mathbf{A}_x=\begin{pmatrix} 1 & \beta \\ 0 & 1 \end{pmatrix} Ax=(10β1)

回顾前文公式:

μ p q ′ = ∑ i = 0 p ∑ j = 0 q ( p i ) T ( q j ) a 11 i ⋅ a 12 p − i ⋅ a 21 j ⋅ a 22 q − j ⋅ μ i + j , p + q − i − j \mu'_{pq} = \sum_{i=0}^{p}\sum_{j=0}^{q} \begin{pmatrix} p \\ i \end{pmatrix}^T \begin{pmatrix} q \\ j \end{pmatrix} a^i_{11}\cdot a^{p-i}_{12}\cdot a^{j}_{21}\cdot a^{q-j}_{22}\cdot \mu_{i+j,p+q-i-j} μpq=i=0pj=0q(pi)T(qj)a11ia12pia21ja22qjμi+j,p+qij

个人理解:这里提到前文公式,是为了告诉读者 μ 30 ( 2 ) \mu^{(2)}_{30} μ30(2) 是怎么求出来的。应该就是把 p , q p,q p,q 和矩阵 A x \mathbf{A}_x Ax 中的参数代入上式,从而得到 μ 30 ( 2 ) \mu^{(2)}_{30} μ30(2)。可是我代入进去的结果不对啊?这里的转置是我自己加的,不加求不了矩阵乘法啊!

我们得到:

μ 30 ( 2 ) = μ 30 ( 1 ) + 3 β μ 21 ( 1 ) + 3 β 2 μ 12 ( 1 ) + β 3 μ 03 ( 1 ) \mu^{(2)}_{30}=\mu^{(1)}_{30}+3\beta\mu^{(1)}_{21}+3\beta^2\mu^{(1)}_{12}+\beta^3\mu^{(1)}_{03} μ30(2)=μ30(1)+3βμ21(1)+3β2μ12(1)+β3μ03(1)

其中, μ p q ( 1 ) \mu^{(1)}_{pq} μpq(1) 是图像 f 1 ( x , y ) f_1(x,y) f1(x,y) 的中心矩。

μ 30 ( 2 ) = 0 \mu^{(2)}_{30}=0 μ30(2)=0,我们得到:

μ 30 ( 1 ) + 3 β μ 21 ( 1 ) + 3 β 2 μ 12 ( 1 ) + β 3 μ 03 ( 1 ) = 0 \mu^{(1)}_{30}+3\beta\mu^{(1)}_{21}+3\beta^2\mu^{(1)}_{12}+\beta^3\mu^{(1)}_{03}=0 μ30(1)+3βμ21(1)+3β2μ12(1)+β3μ03(1)=0

参数 β \beta β 就是通过这个式子得到的。

注意到上式在 μ 03 ( 1 ) ≠ 0 \mu^{(1)}_{03}\neq 0 μ03(1)=0 的情况下最多可以有三个根,这对于大多数自然图像来说是普遍成立的。特别地,我们可能有以下两种情况:

  • 三个根中一个是实根,另外两个是复根;
  • 三个根都是实根。

对于第一种情况,我们简单地取 β \beta β 为实根;对于第二种情况,我们取 β \beta β 为三个实根的中位数。参见附录,这样的选择保证了得到的标准化图像的唯一性。

当然,在一些非常不寻常的条件下,根的个数可能会发生变化。例如,当上式涉及到的所有矩都为 0 0 0 时,它将有无穷多个解。这可以发生在图像是旋转对称的时候,比如圆盘或者圆环。我们参考文献 [16] 和 [17] 来更详细地介绍一般的标准化过程。




矩阵 A y = ( 1 0 γ 1 ) \mathbf{A}_y=\begin{pmatrix} 1 & 0 \\ \gamma & 1 \end{pmatrix} Ay=(1γ01)

回顾前文公式:

μ p q ′ = ∑ i = 0 p ∑ j = 0 q ( p i ) T ( q j ) a 11 i ⋅ a 12 p − i ⋅ a 21 j ⋅ a 22 q − j ⋅ μ i + j , p + q − i − j \mu'_{pq} = \sum_{i=0}^{p}\sum_{j=0}^{q} \begin{pmatrix} p \\ i \end{pmatrix}^T \begin{pmatrix} q \\ j \end{pmatrix} a^i_{11}\cdot a^{p-i}_{12}\cdot a^{j}_{21}\cdot a^{q-j}_{22}\cdot \mu_{i+j,p+q-i-j} μpq=i=0pj=0q(pi)T(qj)a11ia12pia21ja22qjμi+j,p+qij

我们得到:

μ 11 ( 3 ) = γ μ 20 ( 2 ) + μ 11 ( 2 ) \mu^{(3)}_{11}=\gamma\mu^{(2)}_{20}+\mu^{(2)}_{11} μ11(3)=γμ20(2)+μ11(2)

μ 11 ( 3 ) = 0 \mu^{(3)}_{11}=0 μ11(3)=0,我们得到:

γ = − μ 11 ( 2 ) μ 20 ( 2 ) \gamma=-\frac{\mu^{(2)}_{11}}{\mu^{(2)}_{20}} γ=μ20(2)μ11(2)

因此,参数 γ \gamma γ 具有唯一的解。




矩阵 A s = ( α 0 0 δ ) \mathbf{A}_s=\begin{pmatrix} \alpha & 0 \\ 0 & \delta \end{pmatrix} As=(α00δ)

缩放参数 α \alpha α δ \delta δ 的大小通过在水平和垂直方向上将图像 f 3 ( x , y ) f_3(x,y) f3(x,y) 缩放到规定的标准尺寸来确定。它们的符号都是确定的,这样 μ 50 ( 4 ) \mu^{(4)}_{50} μ50(4) μ 05 ( 4 ) \mu^{(4)}_{05} μ05(4) 都是正的,可以通过水平翻转或垂直翻转来改变。

简而言之,参数 α \alpha α δ \delta δ 的大小是根据规定的标准尺寸确定的,标准尺寸的大小决定了参数 α \alpha α δ \delta δ 的取值。由于缩放倍数是非负的,因此参数 α \alpha α δ \delta δ 的符号一定为正(?)



D 水印的影响

值得注意的是,对于水印嵌入,标准化是对原始图像进行的;对于水印提取,标准化是对含水印图像进行的。因此,重要的是设计水印信号,使其对标准化图像的影响最小。

w ( x , y ) w(x,y) w(x,y) 表示添加到原始图像 f ( x , y ) f(x,y) f(x,y) 中的水印信号。令 m p q ( w ) m^{(w)}_{pq} mpq(w) 表示 w ( x , y ) w(x,y) w(x,y) 的原点矩。根据前文公式:

d 1 = m 10 m 00 ,   d 2 = m 01 m 00 d_1=\frac{m_{10}}{m_{00}},\ d_2=\frac{m_{01}}{m_{00}} d1=m00m10, d2=m00m01
可以取 m 10 ( w ) = m 01 ( w ) = 0 m^{(w)}_{10}=m^{(w)}_{01}=0 m10(w)=m01(w)=0,使得 w ( x , y ) w(x,y) w(x,y) 对标准化过程的中心步骤没有影响。

此外,我们希望对于 p + q p+q p+q 等于 2 2 2 3 3 3 m p q ( w ) = 0 m^{(w)}_{pq}=0 mpq(w)=0,使得水印不影响其余的标准化变换。这里假设 w ( x , y ) w(x,y) w(x,y) f ( x , y ) f(x,y) f(x,y) 是统计独立的,因此它们的二阶和三阶中心矩是可加的。

正如后面将要讨论的那样,水印是由零均值高斯或均匀源产生的 C D M A \mathsf{CDMA} CDMA 信号,它被添加到图像的中频 D C T \mathsf{DCT} DCT 系数中。从我们的数值例子可以看出,这样的水印几乎满足上述所描述的所有期望的性质,并且对标准化图像几乎没有影响。



E 可替代的标准化过程

上述标准化过程由一系列初等仿射变换(即剪切和缩放操作)组成。我们指出,其他变换过程也可以用类似的方式构造,以实现标准化图像中的放射变换不变性。比如以下过程:
A = ( c o s ϕ s i n ϕ − s i n ϕ c o s ϕ ) ( α 0 0 δ ) ( 1 β 0 1 ) \mathbf{A}=\begin{pmatrix} cos\phi & sin\phi \\ -sin\phi & cos\phi \end{pmatrix} \begin{pmatrix} \alpha & 0 \\ 0 & \delta \end{pmatrix} \begin{pmatrix} 1 & \beta \\ 0 & 1 \end{pmatrix} A=(cosϕsinϕsinϕcosϕ)(α00δ)(10β1)
其中包括:

  • 1)旋转 ϕ \phi ϕ 角度;
  • 2)在 x x x 方向和 y y y 方向上的缩放;
  • 3)在 x x x 方向上的剪切;

上述过程中的参数可以通过执行每个步骤的一组预定义的矩来确定。感兴趣的读者可以参考文献 [15]



深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值