博主介绍:
✌我是阿龙,一名专注于Java技术领域的程序员,全网拥有10W+粉丝。作为CSDN特邀作者、博客专家、新星计划导师,我在计算机毕业设计开发方面积累了丰富的经验。同时,我也是掘金、华为云、阿里云、InfoQ等平台的优质作者。通过长期分享和实战指导,我致力于帮助更多学生完成毕业项目和技术提升。技术范围:
我熟悉的技术领域涵盖SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、安卓app、大数据、物联网、机器学习等方面的设计与开发。如果你有任何技术难题,我都乐意与你分享解决方案。主要内容:
我的服务内容包括:免费功能设计、开题报告、任务书、中期检查PPT、系统功能实现、代码编写、论文撰写与辅导、论文降重、长期答辩答疑辅导。我还提供腾讯会议一对一的专业讲解和模拟答辩演练,帮助你全面掌握答辩技巧与代码逻辑。🍅获取源码请在文末联系我🍅
目录:
为什么选择我(我可以给你的定制项目推荐核心功能,一对一推荐)实现定制!!!
博主提供的项目均为博主自己收集和开发的!所有的源码都经由博主检验过,能过正常启动并且功能都没有问题!同学们拿到后就能使用!且博主自身就是高级开发,可以将所有的代码都清晰讲解出来。
文章下方名片联系我即可~大家点赞、收藏、关注、评论啦 、查看👇🏻获取联系方式👇🏻精彩专栏推荐订阅:在下方专栏
一、详细操作演示视频
在文章的尾声,您会发现一张电子名片👤,欢迎通过名片上的联系方式与我取得联系,以获取更多关于项目演示的详尽视频内容。视频将帮助您全面理解项目的关键点和操作流程。期待与您的进一步交流!
承诺所有开发的项目,全程售后陪伴!!!
系统总体框架展示
数据库设计与实现
在进行信息管理类型的系统的开发中,都是需要以数据库的设计为基础来进行详细的设计与开发的
E-R模型简介
一般在进行数据库结构的划分时,常使用到E-R图来进行直观的展示。在一个图中有三种元素,分别为实体、属性,以及两者之间的联系。
(1)实体指的是一种具体的事务,可以是任何东西。
(2)联系指的是实体与它的属性之间的关系,可以有不同种类的联系。
(3)属性指的是一个实体本身的特点。
系统E-R图
E-R图是由实体及其关系构成的图,通过E-R图可以清楚地描述系统涉及到的实体之间的相互关系。本系统主要E-R实体如图4-2所示:
图4-2系统主要E-R实体图
数据库表的设计通常是根据业务逻辑设置的。数据库模型在数据库中设计,并根据模型创建数据库表。数据库包含以下数据表来实现对数据库的存储和调用。以下是每个数据表的字段名称、类型、长度、字段说明、主键和默认值。
表4-1:友情链接
字段名称 | 类型 | 长度 | 字段说明 | 主键 | 默认值 |
id | bigint | 主键 | 主键 | ||
addtime | timestamp | 创建时间 | CURRENT_TIMESTAMP | ||
name | varchar | 200 | 名称 | ||
picture | longtext | 4294967295 | 图片 | ||
url | longtext | 4294967295 | 链接 |
表4-2:管理员表
字段名称 | 类型 | 长度 | 字段说明 | 主键 | 默认值 |
id | bigint | 主键 | 主键 | ||
username | varchar | 100 | 用户名 | ||
password | varchar | 100 | 密码 | ||
image | varchar | 200 | 头像 | ||
role | varchar | 100 | 角色 | 管理员 | |
addtime | timestamp | 新增时间 | CURRENT_TIMESTAMP |
表4-3:特色美食评论表
字段名称 | 类型 | 长度 | 字段说明 | 主键 | 默认值 |
id | bigint | 主键 | 主键 | ||
addtime | timestamp | 创建时间 | CURRENT_TIMESTAMP | ||
refid | bigint | 关联表id | |||
userid | bigint | 用户id | |||
avatarurl | longtext | 4294967295 | 头像 | ||
nickname | varchar | 200 | 用户名 | ||
content | longtext | 4294967295 | 评论内容 | ||
score | double | 评分 | |||
reply | longtext | 4294967295 | 回复内容 |
Python语言
Python是一种高级编程语言,其设计目标是易于阅读和编写。Python的语法简洁明了,具有丰富的标准库和第三方库,使得开发者可以快速构建各种应用程序。Python支持多种编程范式,包括面向对象编程、函数式编程和过程式编程。它还提供了许多内置的数据类型和函数,如列表、元组、字典、集合等,以及许多常用的数学函数和字符串操作函数。Python广泛应用于Web开发、数据分析、人工智能等领域。它有许多优秀的框架和库,如Django、Flask、Pandas、NumPy等,可以帮助开发者更高效地完成各种任务。总之,Python是一种功能强大、易学易用的编程语言,适合初学者和专业人士使用。
2.2 Django框架
Django是一个基于Python的高级Web框架,它鼓励快速开发和干净、实用的设计。Django具有许多内置功能,如URL路由、表单处理、用户认证等,可以帮助开发者快速构建Web应用程序。Django采用MVC(Model-View-Controller)设计模式,将应用程序分为模型、视图和控制器三个部分。模型负责处理数据和业务逻辑,视图负责处理用户请求并返回响应,控制器负责协调模型和视图之间的交互。
还提供了许多强大的工具和库,如ORM(对象关系映射)、模板引擎、缓存系统等,可以帮助开发者更高效地完成各种任务。Django还有一个庞大的社区,提供了大量的第三方应用和插件,可以扩展Django的功能。总之,Django是一个功能强大、易用且灵活的Web框架,适合构建各种规模的Web应用程序。无论是初学者还是专业人士,都可以通过使用Django来快速开发出高质量的Web应用程序。
2.3 Hadoop介绍
Hadoop是一个由Apache基金会所开发的分布式系统基础架构,它允许用户在不了解分布式底层细节的情况下开发分布式程序,充分利用集群的威力进行高速运算和存储。Hadoop的核心组件包括Hadoop Distributed File System(HDFS)和MapReduce。HDFS为海量的数据提供了存储,而MapReduce则为海量的数据提供了计算。此外,Hadoop还具有高扩展性、高可靠性和高容错性的特点。随着大数据技术的不断发展,Hadoop已经成为了大数据分析领域不可或缺的工具之一。
2.4 Scrapy介绍
Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架。它使用了Twisted异步网络库来处理网络通信,可以加快下载速度,提高效率。Scrapy包含了数据挖掘、数据清洗和数据存储的流程,尤其擅长处理爬取和处理大批量URL的页面。它还提供了丰富的中间件接口,可以灵活地实现各种定制化需求。
2.5 Vue框架
Vue是一款轻量级的JavaScript框架,它主要用于构建用户界面。Vue具有简单易学、灵活高效的特点,可以快速地开发出交互性强的单页面应用。
Vue采用MVVM(Model-View-ViewModel)架构模式,将数据与视图分离,使得开发者可以更加专注于业务逻辑的开发。同时,Vue还提供了丰富的指令和组件库,可以帮助开发者快速构建复杂的用户界面。除此之外,Vue还具有响应式数据绑定、虚拟DOM、异步更新队列等特性,使得其在性能方面表现优秀。此外,Vue还有一个庞大的社区,提供了大量的第三方插件和工具,可以帮助开发者更好地使用Vue框架。总之,Vue是一款非常优秀的前端框架,可以帮助开发者快速构建高质量的单页面应用。
2.6 MySQL简介
MySQL是一个关系型数据库管理系统,是Oracle公司的产品。MySQL是一种非结构化的语言,用户可以处理数据。自问世以来,MySQL受到了社会的广泛关注。与同类数据库相比,MySQL具有突出的优势,如运行速度快、应用范围广、数据库安全性高等。在语言结构上,MySQL语言简单,其他数据库需要大段代码才能实现操作,而MySQL只需要一小部分甚至几行代码。综上所述,MySQL作为一种关系型数据库管理系统,已经成为开发人员开发和存储项目数据的唯一选择。MySQL还具有多种功能,如数据操作和数据库的建立与维护。该数据库具有数据共享度高、冗余度低、易于扩展等特点。MySQL在安全性方面也有自己的特点。它采用用户身份和认证技术对数据进行加密,尽量保证数据信息的可靠性。介于数据库系统的功能和强大之间,本数据库系统的设计主要采用MySQL来实现对数据的处理。本系统采用MySQL数据库,在Web应用中,MySQL是最好的选择。它在整个系统的开发、建设、运行和维护中起着极其重要的作用。
2.7 B/S结构
B/S结构是指将系统客户端和服务器分开,客户端通过浏览器访问服务器进行操作。
B/S结构被广泛应用于大多数系统建设中,这种结构没有分离C/S结构客户端服务器的缺点,具有更多的优点:跨平台:B/S标准由标准化组织建立,适用于绝大多数系统建设,应用程序之间通用。维护成本低:客户端和服务器分开,减少了两端的压力,特别是客户端,对客户端设备、硬件、软件的要求都比较低,而系统需要升级或维护时,只需要在服务器端进行升级或维护,这样就可以降低相应的成本。
核心代码介绍:HIVE
# coding:utf-8
__author__ = 'ila'
import pymysql
sqlDbConn =pymysql.connect(host='127.0.0.1',
user='root',
password='123456',
database='hive')
def createTable(sqlDbConn):
cursor = sqlDbConn.cursor()
cursor.execute('''CREATE TABLE IF not EXISTS `big_data` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`key1` varchar(255) DEFAULT NULL,
`val1` varchar(255) DEFAULT NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
''')
sqlDbConn.commit()
def getData(sqlDbConn):
print("Read")
cursor = sqlDbConn.cursor()
cursor.execute("select * from big_data")
for row in cursor:
print(row)
def insertData(sqlDbConn):
print("Insert")
cursor = sqlDbConn.cursor()
cursor.execute(
"INSERT INTO `big_data` (`key1`, `val1`) VALUES (%s, %s)",
('Ram', 'Delhi'))
sqlDbConn.commit()
# Without calling commit data will not saved in database.
def updateData(sqlDbConn):
print("Update")
cursor = sqlDbConn.cursor();
cursor.execute(
'update `big_data` set val1 = %s where key1 = %s',
('Motihari', "Ram"))
sqlDbConn.commit()
def deleteData(sqlDbConn):
print("Delete")
cursor = sqlDbConn.cursor();
cursor.execute(
'delete from big_data where key1 = %s',
('Ram'))
sqlDbConn.commit()
# Call the functions one by one
createTable(sqlDbConn)
insertData(sqlDbConn)
updateData(sqlDbConn)
deleteData(sqlDbConn)
getData(sqlDbConn)
sqlDbConn.close()
大数据处理当中使用数据函数:
# coding: utf-8
__author__ = 'ila'
import json
from flask import current_app as app
from pyspark.ml.classification import LogisticRegression
from pyspark.ml.clustering import KMeans
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.regression import LinearRegression
from pyspark.sql import SparkSession
def spark_read_mysql(sql, json_filename):
'''
排序
:param sql:
:param json_filename:
:return:
'''
df = app.spark.read.format("jdbc").options(url=app.jdbc_url,
dbtable=sql).load()
count = df.count()
df_data = df.toPandas().to_dict()
json_data = []
for i in range(count):
temp = {}
for k, v in df_data.items():
temp[k] = v.get(i)
json_data.append(temp)
with open(json_filename, 'w', encoding='utf-8') as f:
f.write(json.dumps(json_data, indent=4, ensure_ascii=False))
def linear(table_name):
'''
回归
:param table_name:
:return:
'''
spark = SparkSession.builder.appName("flask").getOrCreate()
training = spark.read.format("libsvm").table(table_name)
lr = LinearRegression(maxIter=20, regParam=0.01, elasticNetParam=0.6)
lrModel = lr.fit(training)
trainingSummary = lrModel.summary
print("numIterations: %d" % trainingSummary.totalIterations)
print("objectiveHistory: %s" % str(trainingSummary.objectiveHistory))
trainingSummary.residuals.show()
print("RMSE: %f" % trainingSummary.rootMeanSquaredError)
print("r2: %f" % trainingSummary.r2)
result = trainingSummary.residuals.toJSON()
spark.stop()
return result
def cluster(table_name):
'''
聚类
:param table_name:
:return:
'''
spark = SparkSession.builder.appName("flask").getOrCreate()
dataset = spark.read.format("libsvm").table(table_name)
kmeans = KMeans().setK(2).setSeed(1)
model = kmeans.fit(dataset)
centers = model.clusterCenters()
for center in centers:
print(center)
return centers
def selector(table_name, Cols):
'''
分类
:return:
'''
spark = SparkSession.builder.appName("flask").getOrCreate()
data = spark.read.table(table_name)
assembler = VectorAssembler(inputCols=Cols, outputCol="features")
data = assembler.transform(data).select("features", "label")
train_data, test_data = data.randomSplit([0.7, 0.3], seed=0)
lr = LogisticRegression(featuresCol="features", labelCol="label")
model = lr.fit(train_data)
predictions = model.transform(test_data)
return predictions.toJSON()
数据库核心代码:
-- Server version 5.7.31
/*!40101 SET @OLD_CHARACTER_SET_CLIENT=@@CHARACTER_SET_CLIENT */;
/*!40101 SET @OLD_CHARACTER_SET_RESULTS=@@CHARACTER_SET_RESULTS */;
/*!40101 SET @OLD_COLLATION_CONNECTION=@@COLLATION_CONNECTION */;
/*!40101 SET NAMES utf8 */;
/*!40103 SET @OLD_TIME_ZONE=@@TIME_ZONE */;
/*!40103 SET TIME_ZONE='+00:00' */;
/*!40014 SET @OLD_UNIQUE_CHECKS=@@UNIQUE_CHECKS, UNIQUE_CHECKS=0 */;
/*!40014 SET @OLD_FOREIGN_KEY_CHECKS=@@FOREIGN_KEY_CHECKS, FOREIGN_KEY_CHECKS=0 */;
/*!40101 SET @OLD_SQL_MODE=@@SQL_MODE, SQL_MODE='NO_AUTO_VALUE_ON_ZERO' */;
/*!40111 SET @OLD_SQL_NOTES=@@SQL_NOTES, SQL_NOTES=0 */;
--
-- Current Database: `python922rwy91`
--
/*!40000 DROP DATABASE IF EXISTS `python922rwy91`*/;
CREATE DATABASE /*!32312 IF NOT EXISTS*/ `python922rwy91` /*!40100 DEFAULT CHARACTER SET utf8mb4 */;
USE `python922rwy91`;
--
-- Table structure for table `aboutus`
--
DROP TABLE IF EXISTS `aboutus`;
/*!40101 SET @saved_cs_client = @@character_set_client */;
/*!40101 SET character_set_client = utf8 */;
CREATE TABLE `aboutus` (
`id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '主键',
`addtime` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间',
`title` varchar(200) NOT NULL COMMENT '标题',
`subtitle` varchar(200) DEFAULT NULL COMMENT '副标题',
`content` longtext NOT NULL COMMENT '内容',
`picture1` longtext COMMENT '图片1',
`picture2` longtext COMMENT '图片2',
`picture3` longtext COMMENT '图片3',
PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=2 DEFAULT CHARSET=utf8 COMMENT='关于我们';
/*!40101 SET character_set_client = @saved_cs_client */;
--
-- Dumping data for table `aboutus`
--
LOCK TABLES `aboutus` WRITE;
/*!40000 ALTER TABLE `aboutus` DISABLE KEYS */;
INSERT INTO `aboutus` VALUES (1,'2024-02-19 09:19:39','关于我们','ABOUT US','<p>关于我们1</p>','upload/aboutus_picture1.jpg','upload/aboutus_picture2.jpg','upload/aboutus_picture3.jpg');
/*!40000 ALTER TABLE `aboutus` ENABLE KEYS */;
UNLOCK TABLES;
--
-- Table structure for table `config`
--
DROP TABLE IF EXISTS `config`;
/*!40101 SET @saved_cs_client = @@character_set_client */;
/*!40101 SET character_set_client = utf8 */;
CREATE TABLE `config` (
`id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '主键',
`name` varchar(100) NOT NULL COMMENT '配置参数名称',
`value` varchar(100) DEFAULT NULL COMMENT '配置参数值',
`url` varchar(500) DEFAULT NULL COMMENT 'url',
PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=4 DEFAULT CHARSET=utf8 COMMENT='配置文件';
/*!40101 SET character_set_client = @saved_cs_client */;
--
-- Dumping data for table `config`
--
LOCK TABLES `config` WRITE;
/*!40000 ALTER TABLE `config` DISABLE KEYS */;
INSERT INTO `config` VALUES (1,'picture1','upload/1708334836152.jpg',''),(2,'picture2','upload/picture2.jpg',NULL),(3,'picture3','upload/picture3.jpg',NULL);
/*!40000 ALTER TABLE `config` ENABLE KEYS */;
UNLOCK TABLES;
--
-- Table structure for table `discusstesemeishi`
--
DROP TABLE IF EXISTS `discusstesemeishi`;
/*!40101 SET @saved_cs_client = @@character_set_client */;
/*!40101 SET character_set_client = utf8 */;
CREATE TABLE `discusstesemeishi` (
`id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '主键',
`addtime` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间',
`refid` bigint(20) NOT NULL COMMENT '关联表id',
`userid` bigint(20) NOT NULL COMMENT '用户id',
`avatarurl` longtext COMMENT '头像',
`nickname` varchar(200) DEFAULT NULL COMMENT '用户名',
`content` longtext NOT NULL COMMENT '评论内容',
`score` double DEFAULT NULL COMMENT '评分',
`reply` longtext COMMENT '回复内容',
PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=1708334570580 DEFAULT CHARSET=utf8 COMMENT='特色美食评论表';
/*!40101 SET character_set_client = @saved_cs_client */;
--
-- Dumping data for table `discusstesemeishi`
--
LOCK TABLES `discusstesemeishi` WRITE;
/*!40000 ALTER TABLE `discusstesemeishi` DISABLE KEYS */;
INSERT INTO `discusstesemeishi` VALUES (1708334570579,'2024-02-19 09:22:50',33,12,'upload/yonghu_touxiang2.jpg','账号2','<p>这里是评论的地方1</p>',3,NULL);
/*!40000 ALTER TABLE `discusstesemeishi` ENABLE KEYS */;
UNLOCK TABLES;
--
-- Table structure for table `friendlink`
--
DROP TABLE IF EXISTS `friendlink`;
/*!40101 SET @saved_cs_client = @@character_set_client */;
/*!40101 SET character_set_client = utf8 */;
CREATE TABLE `friendlink` (
`id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '主键',
`addtime` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间',
`name` varchar(200) NOT NULL COMMENT '名称',
`picture` longtext COMMENT '图片',
`url` longtext COMMENT '链接',
PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=1708334824822 DEFAULT CHARSET=utf8 COMMENT='友情链接';
/*!40101 SET character_set_client = @saved_cs_client */;
--
-- Dumping data for table `friendlink`
--
LOCK TABLES `friendlink` WRITE;
/*!40000 ALTER TABLE `friendlink` DISABLE KEYS */;
INSERT INTO `friendlink` VALUES (1,'2024-02-19 09:19:39','爱奇艺','upload/fl_aqy.png','https://www.iqiyi.com/'),(2,'2024-02-19 09:19:39','百度','upload/fl_bd.png','https://www.baidu.com/'),(3,'2024-02-19 09:19:39','京东','upload/fl_jd.png','https://www.jd.com/'),(4,'2024-02-19 09:19:39','搜狐','upload/fl_sh.png','https://www.sohu.com/'),(5,'2024-02-19 09:19:39','腾讯','upload/fl_tx.png','https://www.qq.com/'),(6,'2024-02-19 09:19:39','网易','upload/fl_wy.png','https://www.163.com/'),(1708334824821,'2024-02-19 09:27:04','发布链接的地方1','upload/1708334822289.jpeg','https://www.youku.com/');
/*!40000 ALTER TABLE `friendlink` ENABLE KEYS */;
UNLOCK TABLES;
--
-- Table structure for table `goumaijilu`
--
DROP TABLE IF EXISTS `goumaijilu`;
/*!40101 SET @saved_cs_client = @@character_set_client */;
/*!40101 SET character_set_client = utf8 */;
CREATE TABLE `goumaijilu` (
`id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '主键',
`addtime` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间',
`meishimingcheng` varchar(200) DEFAULT NULL COMMENT '美食名称',
`meishitupian` longtext COMMENT '美食图片',
`meishifenlei` varchar(200) DEFAULT NULL COMMENT '美食分类',
`diqu` varchar(200) DEFAULT NULL COMMENT '地区',
`pengrenfangshi` varchar(200) DEFAULT NULL COMMENT '烹饪方式',
`kouwei` varchar(200) DEFAULT NULL COMMENT '口味',
`shoujia` double DEFAULT NULL COMMENT '售价',
`goumaishuliang` int(11) DEFAULT NULL COMMENT '购买数量',
`goumaijine` double DEFAULT NULL COMMENT '购买金额',
`goumaishijian` datetime DEFAULT NULL COMMENT '购买时间',
`zhanghao` varchar(200) DEFAULT NULL COMMENT '账号',
`xingming` varchar(200) DEFAULT NULL COMMENT '姓名',
`shoujihaoma` varchar(200) DEFAULT NULL COMMENT '手机号码',
`ispay` varchar(200) DEFAULT '未支付' COMMENT '是否支付',
PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=1708334615692 DEFAULT CHARSET=utf8 COMMENT='购买记录';
/*!40101 SET character_set_client = @saved_cs_client */;
--
-- Dumping data for table `goumaijilu`
--
LOCK TABLES `goumaijilu` WRITE;
/*!40000 ALTER TABLE `goumaijilu` DISABLE KEYS */;
INSERT INTO `goumaijilu` VALUES (1708334576565,'2024-02-19 09:22:56','美食名称3','upload/tesemeishi_meishitupian3.jpg','美食分类3','地区3','煮','酸',3,1,3,'2024-02-19 17:22:54','账号2','姓名2','13823888882',''),(1708334589127,'2024-02-19 09:23:09','美食名称7','upload/tesemeishi_meishitupian7.jpg','美食分类7','地区7','蒸','酸',7,1,7,'2024-02-19 17:23:07','账号2','姓名2','13823888882',''),(1708334615691,'2024-02-19 09:23:35','美食名称3','upload/tesemeishi_meishitupian3.jpg','美食分类3','地区3','煮','酸',3,1,3,'2024-02-19 17:23:33','11','张三','13111111111','已支付');
/*!40000 ALTER TABLE `goumaijilu` ENABLE KEYS */;
UNLOCK TABLES;
--
-- Table structure for table `meishifenlei`
--
DROP TABLE IF EXISTS `meishifenlei`;
/*!40101 SET @saved_cs_client = @@character_set_client */;
/*!40101 SET character_set_client = utf8 */;
CREATE TABLE `meishifenlei` (
`id` bigint(20) NOT N