基于大数据组件的美食推荐系统设计与实现(Hadoop、Spark、Hive)个性化推荐、用户行为分析与美食推荐算法

 博主介绍:
    ✌我是阿龙,一名专注于Java技术领域的程序员,全网拥有10W+粉丝。作为CSDN特邀作者、博客专家、新星计划导师,我在计算机毕业设计开发方面积累了丰富的经验。同时,我也是掘金、华为云、阿里云、InfoQ等平台的优质作者。通过长期分享和实战指导,我致力于帮助更多学生完成毕业项目和技术提升。

技术范围:
    我熟悉的技术领域涵盖SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、安卓app、大数据、物联网、机器学习等方面的设计与开发。如果你有任何技术难题,我都乐意与你分享解决方案。

 主要内容:
     我的服务内容包括:免费功能设计、开题报告、任务书、中期检查PPT、系统功能实现、代码编写、论文撰写与辅导、论文降重、长期答辩答疑辅导。我还提供腾讯会议一对一的专业讲解和模拟答辩演练,帮助你全面掌握答辩技巧与代码逻辑。

🍅获取源码请在文末联系我🍅

目录:

一、详细操作演示视频       在文章的尾声,您会发现一张电子名片👤,欢迎通过名片上的联系方式与我取得联系,以获取更多关于项目演示的详尽视频内容。视频将帮助您全面理解项目的关键点和操作流程。期待与您的进一步交流!        承诺所有开发的项目,全程售后陪伴!!!

系统总体框架展示

数据库设计与实现

 E-R模型简介

系统E-R图

Python语言

2.2 Django框架

2.3 Hadoop介绍

2.4 Scrapy介绍

2.5 Vue框架

2.6 MySQL简介

2.7 B/S结构

核心代码介绍:HIVE

大数据处理当中使用数据函数:

数据库核心代码:

为什么选择我(我可以给你的定制项目推荐核心功能,一对一推荐)实现定制!!!

     博主提供的项目均为博主自己收集和开发的!所有的源码都经由博主检验过,能过正常启动并且功能都没有问题!同学们拿到后就能使用!且博主自身就是高级开发,可以将所有的代码都清晰讲解出来。

源码获取

文章下方名片联系我即可~大家点赞、收藏、关注、评论啦 、查看👇🏻获取联系方式👇🏻精彩专栏推荐订阅:在下方专栏

一、详细操作演示视频
       在文章的尾声,您会发现一张电子名片👤,欢迎通过名片上的联系方式与我取得联系,以获取更多关于项目演示的详尽视频内容。视频将帮助您全面理解项目的关键点和操作流程。期待与您的进一步交流!
        承诺所有开发的项目,全程售后陪伴!!!

系统总体框架展示

数据库设计与实现

在进行信息管理类型的系统的开发中,都是需要以数据库的设计为基础来进行详细的设计与开发的

 E-R模型简介

一般在进行数据库结构的划分时,常使用到E-R图来进行直观的展示。在一个图中有三种元素,分别为实体、属性,以及两者之间的联系。

(1)实体指的是一种具体的事务,可以是任何东西。

(2)联系指的是实体与它的属性之间的关系,可以有不同种类的联系。

(3)属性指的是一个实体本身的特点。

系统E-R图

E-R图是由实体及其关系构成的图,通过E-R图可以清楚地描述系统涉及到的实体之间的相互关系。本系统主要E-R实体如图4-2所示:

图4-2系统主要E-R实体图

数据库表的设计通常是根据业务逻辑设置的。数据库模型在数据库中设计,并根据模型创建数据库表。数据库包含以下数据表来实现对数据库的存储和调用。以下是每个数据表的字段名称、类型、长度、字段说明、主键和默认值

表4-1友情链接

字段名称

类型

长度

字段说明

主键

默认值

id

bigint

主键

主键

addtime

timestamp

创建时间

CURRENT_TIMESTAMP

name

varchar

200

名称

picture

longtext

4294967295

图片

url

longtext

4294967295

链接

表4-2管理员表

字段名称

类型

长度

字段说明

主键

默认值

id

bigint

主键

主键

username

varchar

100

用户名

password

varchar

100

密码

image

varchar

200

头像

role

varchar

100

角色

管理员

addtime

timestamp

新增时间

CURRENT_TIMESTAMP

表4-3特色美食评论表

字段名称

类型

长度

字段说明

主键

默认值

id

bigint

主键

主键

addtime

timestamp

创建时间

CURRENT_TIMESTAMP

refid

bigint

关联表id

userid

bigint

用户id

avatarurl

longtext

4294967295

头像

nickname

varchar

200

用户名

content

longtext

4294967295

评论内容

score

double

评分

reply

longtext

4294967295

回复内容

Python语言

Python是一种高级编程语言,其设计目标是易于阅读和编写。Python的语法简洁明了,具有丰富的标准库和第三方库,使得开发者可以快速构建各种应用程序。Python支持多种编程范式,包括面向对象编程、函数式编程和过程式编程。它还提供了许多内置的数据类型和函数,如列表、元组、字典、集合等,以及许多常用的数学函数和字符串操作函数。Python广泛应用于Web开发、数据分析、人工智能等领域。它有许多优秀的框架和库,如Django、Flask、Pandas、NumPy等,可以帮助开发者更高效地完成各种任务。总之,Python是一种功能强大、易学易用的编程语言,适合初学者和专业人士使用。

2.2 Django框架

Django是一个基于Python的高级Web框架,它鼓励快速开发和干净、实用的设计。Django具有许多内置功能,如URL路由、表单处理、用户认证等,可以帮助开发者快速构建Web应用程序。Django采用MVC(Model-View-Controller)设计模式,将应用程序分为模型、视图和控制器三个部分。模型负责处理数据和业务逻辑,视图负责处理用户请求并返回响应,控制器负责协调模型和视图之间的交互。

还提供了许多强大的工具和库,如ORM(对象关系映射)、模板引擎、缓存系统等,可以帮助开发者更高效地完成各种任务。Django还有一个庞大的社区,提供了大量的第三方应用和插件,可以扩展Django的功能。总之,Django是一个功能强大、易用且灵活的Web框架,适合构建各种规模的Web应用程序。无论是初学者还是专业人士,都可以通过使用Django来快速开发出高质量的Web应用程序。

2.3 Hadoop介绍

Hadoop是一个由Apache基金会所开发的分布式系统基础架构,它允许用户在不了解分布式底层细节的情况下开发分布式程序,充分利用集群的威力进行高速运算和存储。Hadoop的核心组件包括Hadoop Distributed File System(HDFS)和MapReduce。HDFS为海量的数据提供了存储,而MapReduce则为海量的数据提供了计算。此外,Hadoop还具有高扩展性、高可靠性和高容错性的特点。随着大数据技术的不断发展,Hadoop已经成为了大数据分析领域不可或缺的工具之一。

2.4 Scrapy介绍

Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架。它使用了Twisted异步网络库来处理网络通信,可以加快下载速度,提高效率。Scrapy包含了数据挖掘、数据清洗和数据存储的流程,尤其擅长处理爬取和处理大批量URL的页面。它还提供了丰富的中间件接口,可以灵活地实现各种定制化需求。

2.5 Vue框架

Vue是一款轻量级的JavaScript框架,它主要用于构建用户界面。Vue具有简单易学、灵活高效的特点,可以快速地开发出交互性强的单页面应用。

Vue采用MVVM(Model-View-ViewModel)架构模式,将数据与视图分离,使得开发者可以更加专注于业务逻辑的开发。同时,Vue还提供了丰富的指令和组件库,可以帮助开发者快速构建复杂的用户界面。除此之外,Vue还具有响应式数据绑定、虚拟DOM、异步更新队列等特性,使得其在性能方面表现优秀。此外,Vue还有一个庞大的社区,提供了大量的第三方插件和工具,可以帮助开发者更好地使用Vue框架。总之,Vue是一款非常优秀的前端框架,可以帮助开发者快速构建高质量的单页面应用。

2.6 MySQL简介

MySQL是一个关系型数据库管理系统,是Oracle公司的产品。MySQL是一种非结构化的语言,用户可以处理数据。自问世以来,MySQL受到了社会的广泛关注。与同类数据库相比,MySQL具有突出的优势,如运行速度快、应用范围广、数据库安全性高等。在语言结构上,MySQL语言简单,其他数据库需要大段代码才能实现操作,而MySQL只需要一小部分甚至几行代码。综上所述,MySQL作为一种关系型数据库管理系统,已经成为开发人员开发和存储项目数据的唯一选择。MySQL还具有多种功能,如数据操作和数据库的建立与维护。该数据库具有数据共享度高、冗余度低、易于扩展等特点。MySQL在安全性方面也有自己的特点。它采用用户身份和认证技术对数据进行加密,尽量保证数据信息的可靠性。介于数据库系统的功能和强大之间,本数据库系统的设计主要采用MySQL来实现对数据的处理。本系统采用MySQL数据库,在Web应用中,MySQL是最好的选择。它在整个系统的开发、建设、运行和维护中起着极其重要的作用。

2.7 B/S结构

B/S结构是指将系统客户端和服务器分开,客户端通过浏览器访问服务器进行操作。

B/S结构被广泛应用于大多数系统建设中,这种结构没有分离C/S结构客户端服务器的缺点,具有更多的优点:跨平台:B/S标准由标准化组织建立,适用于绝大多数系统建设,应用程序之间通用。维护成本低:客户端和服务器分开,减少了两端的压力,特别是客户端,对客户端设备、硬件、软件的要求都比较低,而系统需要升级或维护时,只需要在服务器端进行升级或维护,这样就可以降低相应的成本。

核心代码介绍:HIVE

# coding:utf-8
__author__ = 'ila'
import  pymysql

sqlDbConn =pymysql.connect(host='127.0.0.1',
                     user='root',
                     password='123456',
                     database='hive')


def createTable(sqlDbConn):
    cursor = sqlDbConn.cursor()
    cursor.execute('''CREATE TABLE IF not EXISTS  `big_data` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `key1` varchar(255) DEFAULT NULL,
  `val1` varchar(255) DEFAULT NULL,
  PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
''')
    sqlDbConn.commit()
def getData(sqlDbConn):
    print("Read")
    cursor = sqlDbConn.cursor()
    cursor.execute("select * from big_data")
    for row in cursor:
        print(row)


def insertData(sqlDbConn):
    print("Insert")
    cursor = sqlDbConn.cursor()
    cursor.execute(
        "INSERT INTO `big_data` (`key1`, `val1`) VALUES (%s, %s)",
        ('Ram', 'Delhi'))

    sqlDbConn.commit()
    # Without calling commit data will not saved in database.


def updateData(sqlDbConn):
    print("Update")
    cursor = sqlDbConn.cursor();
    cursor.execute(
        'update `big_data` set val1 = %s where key1 = %s',
        ('Motihari', "Ram"))
    sqlDbConn.commit()


def deleteData(sqlDbConn):
    print("Delete")
    cursor = sqlDbConn.cursor();
    cursor.execute(
        'delete from big_data where key1 = %s',
        ('Ram'))
    sqlDbConn.commit()


# Call the functions one by one
createTable(sqlDbConn)
insertData(sqlDbConn)
updateData(sqlDbConn)
deleteData(sqlDbConn)
getData(sqlDbConn)

sqlDbConn.close()

大数据处理当中使用数据函数:

# coding: utf-8
__author__ = 'ila'

import json

from flask import current_app as app
from pyspark.ml.classification import LogisticRegression
from pyspark.ml.clustering import KMeans
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.regression import LinearRegression
from pyspark.sql import SparkSession


def spark_read_mysql(sql, json_filename):
    '''
    排序
    :param sql:
    :param json_filename:
    :return:
    '''
    df = app.spark.read.format("jdbc").options(url=app.jdbc_url,
                                               dbtable=sql).load()
    count = df.count()
    df_data = df.toPandas().to_dict()
    json_data = []
    for i in range(count):
        temp = {}
        for k, v in df_data.items():
            temp[k] = v.get(i)
        json_data.append(temp)
    with open(json_filename, 'w', encoding='utf-8') as f:
        f.write(json.dumps(json_data, indent=4, ensure_ascii=False))


def linear(table_name):
    '''
    回归
    :param table_name:
    :return:
    '''

    spark = SparkSession.builder.appName("flask").getOrCreate()

    training = spark.read.format("libsvm").table(table_name)

    lr = LinearRegression(maxIter=20, regParam=0.01, elasticNetParam=0.6)
    lrModel = lr.fit(training)

    trainingSummary = lrModel.summary
    print("numIterations: %d" % trainingSummary.totalIterations)
    print("objectiveHistory: %s" % str(trainingSummary.objectiveHistory))
    trainingSummary.residuals.show()
    print("RMSE: %f" % trainingSummary.rootMeanSquaredError)
    print("r2: %f" % trainingSummary.r2)

    result = trainingSummary.residuals.toJSON()
    spark.stop()
    return result


def cluster(table_name):
    '''
    聚类
    :param table_name:
    :return:
    '''

    spark = SparkSession.builder.appName("flask").getOrCreate()
    dataset = spark.read.format("libsvm").table(table_name)

    kmeans = KMeans().setK(2).setSeed(1)
    model = kmeans.fit(dataset)

    centers = model.clusterCenters()
    for center in centers:
        print(center)

    return centers


def selector(table_name, Cols):
    '''
    分类
    :return:
    '''
    spark = SparkSession.builder.appName("flask").getOrCreate()

    data = spark.read.table(table_name)

    assembler = VectorAssembler(inputCols=Cols, outputCol="features")
    data = assembler.transform(data).select("features", "label")

    train_data, test_data = data.randomSplit([0.7, 0.3], seed=0)

    lr = LogisticRegression(featuresCol="features", labelCol="label")

    model = lr.fit(train_data)

    predictions = model.transform(test_data)

    return predictions.toJSON()

数据库核心代码:

-- Server version	5.7.31

/*!40101 SET @OLD_CHARACTER_SET_CLIENT=@@CHARACTER_SET_CLIENT */;
/*!40101 SET @OLD_CHARACTER_SET_RESULTS=@@CHARACTER_SET_RESULTS */;
/*!40101 SET @OLD_COLLATION_CONNECTION=@@COLLATION_CONNECTION */;
/*!40101 SET NAMES utf8 */;
/*!40103 SET @OLD_TIME_ZONE=@@TIME_ZONE */;
/*!40103 SET TIME_ZONE='+00:00' */;
/*!40014 SET @OLD_UNIQUE_CHECKS=@@UNIQUE_CHECKS, UNIQUE_CHECKS=0 */;
/*!40014 SET @OLD_FOREIGN_KEY_CHECKS=@@FOREIGN_KEY_CHECKS, FOREIGN_KEY_CHECKS=0 */;
/*!40101 SET @OLD_SQL_MODE=@@SQL_MODE, SQL_MODE='NO_AUTO_VALUE_ON_ZERO' */;
/*!40111 SET @OLD_SQL_NOTES=@@SQL_NOTES, SQL_NOTES=0 */;

--
-- Current Database: `python922rwy91`
--

/*!40000 DROP DATABASE IF EXISTS `python922rwy91`*/;

CREATE DATABASE /*!32312 IF NOT EXISTS*/ `python922rwy91` /*!40100 DEFAULT CHARACTER SET utf8mb4 */;

USE `python922rwy91`;

--
-- Table structure for table `aboutus`
--

DROP TABLE IF EXISTS `aboutus`;
/*!40101 SET @saved_cs_client     = @@character_set_client */;
/*!40101 SET character_set_client = utf8 */;
CREATE TABLE `aboutus` (
  `id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '主键',
  `addtime` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间',
  `title` varchar(200) NOT NULL COMMENT '标题',
  `subtitle` varchar(200) DEFAULT NULL COMMENT '副标题',
  `content` longtext NOT NULL COMMENT '内容',
  `picture1` longtext COMMENT '图片1',
  `picture2` longtext COMMENT '图片2',
  `picture3` longtext COMMENT '图片3',
  PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=2 DEFAULT CHARSET=utf8 COMMENT='关于我们';
/*!40101 SET character_set_client = @saved_cs_client */;

--
-- Dumping data for table `aboutus`
--

LOCK TABLES `aboutus` WRITE;
/*!40000 ALTER TABLE `aboutus` DISABLE KEYS */;
INSERT INTO `aboutus` VALUES (1,'2024-02-19 09:19:39','关于我们','ABOUT US','<p>关于我们1</p>','upload/aboutus_picture1.jpg','upload/aboutus_picture2.jpg','upload/aboutus_picture3.jpg');
/*!40000 ALTER TABLE `aboutus` ENABLE KEYS */;
UNLOCK TABLES;

--
-- Table structure for table `config`
--

DROP TABLE IF EXISTS `config`;
/*!40101 SET @saved_cs_client     = @@character_set_client */;
/*!40101 SET character_set_client = utf8 */;
CREATE TABLE `config` (
  `id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '主键',
  `name` varchar(100) NOT NULL COMMENT '配置参数名称',
  `value` varchar(100) DEFAULT NULL COMMENT '配置参数值',
  `url` varchar(500) DEFAULT NULL COMMENT 'url',
  PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=4 DEFAULT CHARSET=utf8 COMMENT='配置文件';
/*!40101 SET character_set_client = @saved_cs_client */;

--
-- Dumping data for table `config`
--

LOCK TABLES `config` WRITE;
/*!40000 ALTER TABLE `config` DISABLE KEYS */;
INSERT INTO `config` VALUES (1,'picture1','upload/1708334836152.jpg',''),(2,'picture2','upload/picture2.jpg',NULL),(3,'picture3','upload/picture3.jpg',NULL);
/*!40000 ALTER TABLE `config` ENABLE KEYS */;
UNLOCK TABLES;

--
-- Table structure for table `discusstesemeishi`
--

DROP TABLE IF EXISTS `discusstesemeishi`;
/*!40101 SET @saved_cs_client     = @@character_set_client */;
/*!40101 SET character_set_client = utf8 */;
CREATE TABLE `discusstesemeishi` (
  `id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '主键',
  `addtime` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间',
  `refid` bigint(20) NOT NULL COMMENT '关联表id',
  `userid` bigint(20) NOT NULL COMMENT '用户id',
  `avatarurl` longtext COMMENT '头像',
  `nickname` varchar(200) DEFAULT NULL COMMENT '用户名',
  `content` longtext NOT NULL COMMENT '评论内容',
  `score` double DEFAULT NULL COMMENT '评分',
  `reply` longtext COMMENT '回复内容',
  PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=1708334570580 DEFAULT CHARSET=utf8 COMMENT='特色美食评论表';
/*!40101 SET character_set_client = @saved_cs_client */;

--
-- Dumping data for table `discusstesemeishi`
--

LOCK TABLES `discusstesemeishi` WRITE;
/*!40000 ALTER TABLE `discusstesemeishi` DISABLE KEYS */;
INSERT INTO `discusstesemeishi` VALUES (1708334570579,'2024-02-19 09:22:50',33,12,'upload/yonghu_touxiang2.jpg','账号2','<p>这里是评论的地方1</p>',3,NULL);
/*!40000 ALTER TABLE `discusstesemeishi` ENABLE KEYS */;
UNLOCK TABLES;

--
-- Table structure for table `friendlink`
--

DROP TABLE IF EXISTS `friendlink`;
/*!40101 SET @saved_cs_client     = @@character_set_client */;
/*!40101 SET character_set_client = utf8 */;
CREATE TABLE `friendlink` (
  `id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '主键',
  `addtime` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间',
  `name` varchar(200) NOT NULL COMMENT '名称',
  `picture` longtext COMMENT '图片',
  `url` longtext COMMENT '链接',
  PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=1708334824822 DEFAULT CHARSET=utf8 COMMENT='友情链接';
/*!40101 SET character_set_client = @saved_cs_client */;

--
-- Dumping data for table `friendlink`
--

LOCK TABLES `friendlink` WRITE;
/*!40000 ALTER TABLE `friendlink` DISABLE KEYS */;
INSERT INTO `friendlink` VALUES (1,'2024-02-19 09:19:39','爱奇艺','upload/fl_aqy.png','https://www.iqiyi.com/'),(2,'2024-02-19 09:19:39','百度','upload/fl_bd.png','https://www.baidu.com/'),(3,'2024-02-19 09:19:39','京东','upload/fl_jd.png','https://www.jd.com/'),(4,'2024-02-19 09:19:39','搜狐','upload/fl_sh.png','https://www.sohu.com/'),(5,'2024-02-19 09:19:39','腾讯','upload/fl_tx.png','https://www.qq.com/'),(6,'2024-02-19 09:19:39','网易','upload/fl_wy.png','https://www.163.com/'),(1708334824821,'2024-02-19 09:27:04','发布链接的地方1','upload/1708334822289.jpeg','https://www.youku.com/');
/*!40000 ALTER TABLE `friendlink` ENABLE KEYS */;
UNLOCK TABLES;

--
-- Table structure for table `goumaijilu`
--

DROP TABLE IF EXISTS `goumaijilu`;
/*!40101 SET @saved_cs_client     = @@character_set_client */;
/*!40101 SET character_set_client = utf8 */;
CREATE TABLE `goumaijilu` (
  `id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '主键',
  `addtime` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间',
  `meishimingcheng` varchar(200) DEFAULT NULL COMMENT '美食名称',
  `meishitupian` longtext COMMENT '美食图片',
  `meishifenlei` varchar(200) DEFAULT NULL COMMENT '美食分类',
  `diqu` varchar(200) DEFAULT NULL COMMENT '地区',
  `pengrenfangshi` varchar(200) DEFAULT NULL COMMENT '烹饪方式',
  `kouwei` varchar(200) DEFAULT NULL COMMENT '口味',
  `shoujia` double DEFAULT NULL COMMENT '售价',
  `goumaishuliang` int(11) DEFAULT NULL COMMENT '购买数量',
  `goumaijine` double DEFAULT NULL COMMENT '购买金额',
  `goumaishijian` datetime DEFAULT NULL COMMENT '购买时间',
  `zhanghao` varchar(200) DEFAULT NULL COMMENT '账号',
  `xingming` varchar(200) DEFAULT NULL COMMENT '姓名',
  `shoujihaoma` varchar(200) DEFAULT NULL COMMENT '手机号码',
  `ispay` varchar(200) DEFAULT '未支付' COMMENT '是否支付',
  PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=1708334615692 DEFAULT CHARSET=utf8 COMMENT='购买记录';
/*!40101 SET character_set_client = @saved_cs_client */;

--
-- Dumping data for table `goumaijilu`
--

LOCK TABLES `goumaijilu` WRITE;
/*!40000 ALTER TABLE `goumaijilu` DISABLE KEYS */;
INSERT INTO `goumaijilu` VALUES (1708334576565,'2024-02-19 09:22:56','美食名称3','upload/tesemeishi_meishitupian3.jpg','美食分类3','地区3','煮','酸',3,1,3,'2024-02-19 17:22:54','账号2','姓名2','13823888882',''),(1708334589127,'2024-02-19 09:23:09','美食名称7','upload/tesemeishi_meishitupian7.jpg','美食分类7','地区7','蒸','酸',7,1,7,'2024-02-19 17:23:07','账号2','姓名2','13823888882',''),(1708334615691,'2024-02-19 09:23:35','美食名称3','upload/tesemeishi_meishitupian3.jpg','美食分类3','地区3','煮','酸',3,1,3,'2024-02-19 17:23:33','11','张三','13111111111','已支付');
/*!40000 ALTER TABLE `goumaijilu` ENABLE KEYS */;
UNLOCK TABLES;

--
-- Table structure for table `meishifenlei`
--

DROP TABLE IF EXISTS `meishifenlei`;
/*!40101 SET @saved_cs_client     = @@character_set_client */;
/*!40101 SET character_set_client = utf8 */;
CREATE TABLE `meishifenlei` (
  `id` bigint(20) NOT N

为什么选择我(我可以给你的定制项目推荐核心功能,一对一推荐)实现定制!!!
     博主提供的项目均为博主自己收集和开发的!所有的源码都经由博主检验过,能过正常启动并且功能都没有问题!同学们拿到后就能使用!且博主自身就是高级开发,可以将所有的代码都清晰讲解出来。

  • 源码获取

    文章下方名片联系我即可~
    大家点赞、收藏、关注、评论啦 、查看👇🏻获取联系方式👇🏻
    精彩专栏推荐订阅:在下方专栏

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员阿龙

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值