Kilani正在和他的朋友玩一个游戏。这个游戏可以表示为一个n×m的网格,其中每个单元格都是空的或者被阻塞的,并且每个玩家在一些单元格中拥有一个或多个城堡(一个单元格中没有两个城堡)。
游戏分轮进行。每轮玩家依次扩展:首先,第一个玩家扩展,然后第二个玩家扩展,依此类推。扩展发生如下:对于每个现在拥有的城堡,玩家尝试扩展到附近的空单元格。如果从拥有他的城堡到空单元格的距离不超过si(si是玩家的扩展速度),则玩家i可以向左、上、右或下扩展,而不经过被阻塞的单元格或被其他玩家的城堡占据的单元格。玩家检查他可以扩展到的单元格集,并一次性在每个单元格中构建一个城堡。然后将回合传递给下一个玩家。
当没有玩家能够行动时,游戏结束。你将得到游戏场地和每个玩家扩展速度。Kilani想知道每个玩家在游戏结束后将控制多少个单元格(拥有一个城堡)。
输入 第一行包含三个整数n,m和p(1≤n,m≤1000,1≤p≤9)——网格的大小和玩家数量。
第二行包含p个整数si(1≤s≤109)——每个玩家扩展的速度。
接下来的n行描述了游戏网格。它们中的每一个都由m个符号组成,其中“。”表示空单元格,“#”表示阻塞单元格,数字x(1≤x≤p)表示玩家x拥有的城堡。
保证每个玩家在网格上至少有一个城堡。
输出 打印p个整数——游戏结束后每个玩家控制的单元格数。
Examples
input
Copy
3 3 2 1 1 1.. ... ..2
output
Copy
6 3
input
Copy
3 4 4 1 1 1 1 .... #... 1234
output
Copy
1 4 3 3
题解:
题意很容易理解,假设当前玩家i的城堡有cnt个,每个城堡内的曼哈顿距离为si的都要覆盖上,
那么如何模拟这个过程呢?
每次所有已有城堡都往四周扩散一次,把旧的城堡清空,新的城堡存进来,直到没有新的城堡存入,或者扩散了si次,对于每个玩家i都是这样扩展si次,直到所有点被填充,由于每个点顶多访问1次,所以也不会超时
#include <cstdio>
#include <cstring>
#include <algorithm>
#include<iostream>
#include<vector>
#include<set>
#include<map>
#include<cmath>
#include<queue>
using namespace std;
typedef long long ll;
#define int long long
typedef pair<int,int> PII;
int mod = 1e9 + 7;
int n,m,k;
int cnt[10];
int mp[1004][1004];
vector<PII> p[10];
int ans[10];
int dx[4] ={0,0,-1,1};
int dy[4] ={-1,1,0,0};
int f = 0;
void bfs(int x)
{
vector<PII> now;
while(p[x].size())
{
PII t = p[x].back();
now.push_back(t);
p[x].pop_back();
}
for(int j = 0;j < now.size();j++)
{
PII t = now[j];
for(int i = 0;i < 4;i++)
{
int tx = t.first + dx[i];
int ty = t.second + dy[i];
if(tx >= 1&&tx <= n&&ty >= 1&&ty <= m&&!mp[tx][ty])
{
mp[tx][ty] = x;
ans[x]++;
p[x].push_back({tx,ty});
}
}
}
if(p[x].size())
{
f = 1;
}
else
{
f = 0;
}
}
void solve()
{
cin >> n >> m >> k;
for(int i = 1;i <= k;i++)
cin >> cnt[i];
for(int i = 1;i <= n;i++)
{
for(int j = 1;j <= m;j++)
{
char x;
cin >> x;
if(x == '.')
{
mp[i][j] = 0;
continue;
}
else if(x == '#')
{
mp[i][j] = 1000;
continue;
}
int y = x - '0';
mp[i][j] = y;
if(y >= 1&&y <= 9)
{
p[y].push_back({i,j});
ans[y]++;
}
}
}
while(1)
{
int flag = 0;
for(int i = 1;i <= k;i++)
{
f = 0;
for(int j = 1;j <= cnt[i];j++)
{
bfs(i);
flag = flag|f;
if(!f)
break;
}
}
if(!flag)
break;
}
for(int i = 1;i <= k;i++)
cout << ans[i] <<" ";
}
//5 7 8 9 10
signed main()
{
// ios::sync_with_stdio(0);
// cin.tie(0);cout.tie(0);
int t = 1;
// cin >> t;
while(t--)
{
solve();
}
}