Acingel是一个小镇。这里只有一位医生——Miss Ada。她非常友善,没有人曾经对她说过坏话,所以谁能想到Ada会在她的房子里被发现死亡?世界著名侦探Gawry先生被任命查找罪犯。他询问Ada的邻居关于那个不幸的日子里拜访她的客人。我们将客户编号从1到n。每个邻居的证言都是这些数字的排列,描述了被询问的邻居所见到的客户的顺序。
然而,一些事实非常可疑——根据给定的某些排列,一些客户早上被看到,而在其他排列中他们傍晚被看到了?“早上一些邻居一定在睡觉!”Gawry想道:“而晚上天色太暗,看不清什么人的面孔......”。现在他想要删除每个排列中的一些前缀和一些后缀(前缀和后缀都可以为空),使得它们在此之后非空且相等——一些潜在的罪犯可能会消失,但证言不会相互矛盾。
他可以用多少种方法来做到这一点?如果剩下的共同部分不同,则两种方式被视为不同。
输入
第一行包含两个整数n和m(1≤n≤100000,1≤m≤10)——嫌疑人数量和询问邻居数量。
接下来的m行中,每行包含n个整数a1、a2、……、an(1≤ai≤n)。保证这些整数形成了一个正确的排列(即,从1到n的每个数字恰好出现一次)。
输出
输出一个整数,表示删除每个排列的某些前缀和某些后缀(可能为空),使得剩余的部分相等且非空的方法数量。
Examples
input
Copy
3 2 1 2 3 2 3 1
output
Copy
4
input
Copy
5 6 1 2 3 4 5 2 3 1 4 5 3 4 5 1 2 3 5 4 2 1 2 3 5 4 1 1 2 3 4 5
output
Copy
5
input
Copy
2 2 1 2 2 1
output
Copy
2
题解:
由于这是排列,每个数字只会出现一次,我们记录m个排列,每个数字下一个的数字,
ne[i][a[i][j-1]] = ne[i][a[i][j]]
记录这有什么用呢?
正常来讲,每个位置都至少有一个贡献,因为这是排列,n以内的每个数字必会出现一次,
接着我们以第一个排列为模板串,遍历0~n - 1
取出此时a[1][i]代表排列1此时的数字,排列1下一个数字是a[1][i+1]
排列2~m中a[1][i]的下一个数字为,ne[j][a[1][i]]
如果都成立的话
cnt[i + 1]的贡献还要加上cnt[i]的贡献
最后统计每个位置贡献和即可
#include <cstdio>
#include <cstring>
#include <algorithm>
#include<iostream>
#include<vector>
#include<set>
#include<map>
#include<cmath>
#include<queue>
using namespace std;
typedef long long ll;
#define int long long
typedef pair<int,int> PII;
int mod = 1e9 + 7;
int a[14][100050];
int ne[14][100040];
int cnt[100050];
void solve()
{
int n,m;
cin >> n >> m;
for(int i = 1;i <= m;i++)
{
for(int j = 1;j <= n;j++)
{
cin >> a[i][j];
}
for(int j = n;j >= 1;j--)
{
ne[i][a[i][j - 1]] = a[i][j];
}
}
int ans = 0;
for(int i = 0;i < n;i++)
{
int x = a[1][i];
int f = 1;
for(int j = 2;j <= m;j++)
{
if(ne[j][x] != a[1][i + 1])
{
f = 0;
break;
}
}
cnt[i + 1] = 1;
if(f)
cnt[i + 1] += cnt[i];
}
for(int i = 1;i <= n;i++)
{
ans += cnt[i];
}
cout << ans;
}
signed main()
{
ios::sync_with_stdio(0 );
cin.tie(0);cout.tie(0);
int t = 1;
// cin >> t;
while(t--)
{
solve();
}
}