D. Mysterious Crime(单个位置贡献)

Problem - D - Codeforces

Acingel是一个小镇。这里只有一位医生——Miss Ada。她非常友善,没有人曾经对她说过坏话,所以谁能想到Ada会在她的房子里被发现死亡?世界著名侦探Gawry先生被任命查找罪犯。他询问Ada的邻居关于那个不幸的日子里拜访她的客人。我们将客户编号从1到n。每个邻居的证言都是这些数字的排列,描述了被询问的邻居所见到的客户的顺序。

然而,一些事实非常可疑——根据给定的某些排列,一些客户早上被看到,而在其他排列中他们傍晚被看到了?“早上一些邻居一定在睡觉!”Gawry想道:“而晚上天色太暗,看不清什么人的面孔......”。现在他想要删除每个排列中的一些前缀和一些后缀(前缀和后缀都可以为空),使得它们在此之后非空且相等——一些潜在的罪犯可能会消失,但证言不会相互矛盾。

他可以用多少种方法来做到这一点?如果剩下的共同部分不同,则两种方式被视为不同。

输入

第一行包含两个整数n和m(1≤n≤100000,1≤m≤10)——嫌疑人数量和询问邻居数量。

接下来的m行中,每行包含n个整数a1、a2、……、an(1≤ai≤n)。保证这些整数形成了一个正确的排列(即,从1到n的每个数字恰好出现一次)。

输出

输出一个整数,表示删除每个排列的某些前缀和某些后缀(可能为空),使得剩余的部分相等且非空的方法数量。

Examples

input

Copy

3 2
1 2 3
2 3 1

output

Copy

4

input

Copy

5 6
1 2 3 4 5
2 3 1 4 5
3 4 5 1 2
3 5 4 2 1
2 3 5 4 1
1 2 3 4 5

output

Copy

5

input

Copy

2 2
1 2
2 1

output

Copy

2

题解:
由于这是排列,每个数字只会出现一次,我们记录m个排列,每个数字下一个的数字,

ne[i][a[i][j-1]] = ne[i][a[i][j]]

记录这有什么用呢?

正常来讲,每个位置都至少有一个贡献,因为这是排列,n以内的每个数字必会出现一次,

接着我们以第一个排列为模板串,遍历0~n - 1

取出此时a[1][i]代表排列1此时的数字,排列1下一个数字是a[1][i+1]

排列2~m中a[1][i]的下一个数字为,ne[j][a[1][i]]

如果都成立的话

cnt[i + 1]的贡献还要加上cnt[i]的贡献

最后统计每个位置贡献和即可

#include <cstdio>
#include <cstring>
#include <algorithm>
#include<iostream>
#include<vector>
#include<set>
#include<map>
#include<cmath>
#include<queue>
using namespace std;
typedef long long ll;
#define int long long
typedef pair<int,int> PII;
int mod = 1e9 + 7;
int a[14][100050];
int ne[14][100040];
int cnt[100050];
void solve()
{
	int n,m;
	cin >> n >> m;
	for(int i = 1;i <= m;i++)
	{
		for(int j = 1;j <= n;j++)
		{
			cin >> a[i][j];
		}
		for(int j = n;j >= 1;j--)
		{
			ne[i][a[i][j - 1]] = a[i][j];
		}
	}
	int ans = 0;
	for(int i = 0;i < n;i++)
	{
		int x = a[1][i];
		int f = 1;
		for(int j = 2;j <= m;j++)
		{
			if(ne[j][x] != a[1][i + 1])
			{
				f = 0;
				break;
			}
		}
		cnt[i + 1] = 1;
		if(f)
		cnt[i + 1] += cnt[i];
	}
	for(int i = 1;i <= n;i++)
	{
		ans += cnt[i];
	}
	cout << ans;
}
signed main()
{
	ios::sync_with_stdio(0 );
	cin.tie(0);cout.tie(0);
	int t = 1;
//	cin >> t;
	while(t--)
	{
		solve(); 
	}
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值