Acwing-算法基础课——图论篇 代码模板大全

一. 树与图的深度优先遍历(846. 树的重心 - AcWing题库

#include <bits/stdc++.h>

using namespace std;

const int N = 201000;
const int M = 2 * N;

int idx,e[M],h[N],ne[M];
int n; 
bool str[M];
int ans=N;

void add(int a,int b)
{
    e[idx]=b,ne[idx]=h[a],h[a]=idx++;
}

int dfs(int u)
{
    str[u]=true;

    int sum=1,res=0;

    for(int i=h[u];i!=-1;i=ne[i])
    {
        int j=e[i];
        if(!str[j])
        {
            int s=dfs(j);
            res=max(res,s);
            sum+=s;
        }
    }

    res=max(res,n-sum);

    ans=min(ans,res);

    return sum;
}

int main()
{
    cin>>n;

    memset(h,-1,sizeof h);


    for(int i=0;i<n-1;i++)
    {
        int a,b;
        cin>>a>>b;
        add(a,b);
        add(b,a);
    }

    dfs(1);

    cout<<ans<<'\n';
    return 0;
}

二.树与图的广度优先遍历(847. 图中点的层次 - AcWing题库)

#include <bits/stdc++.h>

using namespace std;

const int N = 101000;

int n,m;
int e[N],ne[N],h[N],idx;
int d[N];

void add(int a,int b)
{
    e[idx]=b,ne[idx]=h[a],h[a]=idx++;
}

int bfs()
{
    queue<int> q;

    memset(d,-1,sizeof d);

    q.push(1);

    d[1]=0;

    while(q.size())
    {
        int t=q.front();

        q.pop();

        for(int i=h[t];i!=-1;i=ne[i])
        {
            int j=e[i];

            if(d[j]==-1)
            {
                d[j]=d[t]+1;
                q.push(j);
            }
        }
    }
    return d[n];
}

int main()
{
    cin>>n>>m;

    int a,b;

    memset(h,-1,sizeof h);

    for(int i=1;i<=m;i++)
    {
        cin>>a>>b;
        add(a,b);
    }

    cout<<bfs()<<'\n';

    return 0;
}

三.拓扑排序(848. 有向图的拓扑序列 - AcWing题库)

#include <bits/stdc++.h>

using namespace std;

const int N = 101000;

int n,m;
int e[N],ne[N],h[N],idx;
int d[N],q[N];

void add(int a,int b)
{
    e[idx]=b,ne[idx]=h[a],h[a]=idx++;
}

bool topsort()
{
    int hh=0,tt=-1;

    for(int i=1;i<=n;i++)
    {
        if(!d[i])
        {
            q[++tt]=i;
        }
    }

    while(hh<=tt)
    {
        int t=q[hh++];

        for(int i=h[t];i!=-1;i=ne[i])
        {
            int j=e[i];
            d[j]--;
            if(!d[j])
            {
                q[++tt]=j;
            }
        }
    }
    return tt==n-1;
}


int main()
{
    cin>>n>>m;

    memset(h,-1,sizeof h);

    for(int i=1;i<=m;i++)
    {
        int a,b;
        cin>>a>>b;
        add(a,b);
        d[b]++;
    }

    if(topsort())
    {

        for(int i=0;i<n;i++)
        {
            cout<<q[i]<<" ";
        }

        cout<<'\n';

    }else{
        cout<<"-1\n";
    }
    return 0;
}

 

四.求最短路

1.Dijkstra 朴素算法  O(n^2) (849. Dijkstra求最短路 I - AcWing题库)

#include <bits/stdc++.h>

using namespace std;

const int N = 510;

int n,m; 
int g[N][N],d[N];
bool str[N];

int Dijlstra()
{
    memset(d,0x3f,sizeof d);

    d[1]=0;

    for(int i=0;i<n;i++)
    {
        int t=-1;
        for(int j=1;j<=n;j++)
        {
            if(!str[j]&&(t==-1||d[t]>d[j]))
            {
                t=j;
            }
        }

        for(int j=1;j<=n;j++)
        {
            d[j]=min(d[j],d[t]+g[t][j]);
        }

        str[t]=true;

    }

    if(d[n]==0x3f3f3f3f) return -1;
    else return d[n];
}

int main()
{
    cin>>n>>m;

    memset(g,0x3f,sizeof g);

    while(m--)
    {
        int x,y,z;
        cin>>x>>y>>z;

        g[x][y]=min(g[x][y],z);

    }

    cout<<Dijlstra()<<'\n';

    return 0;
}

2.堆优化版的Dijkstra算法 O(mlogn)

(850. Dijkstra求最短路 II - AcWing题库)

#include <bits/stdc++.h>

using namespace std;

typedef long long ll;

typedef pair<int ,int > PII;

const int N = 201000;

int n,m; 
int e[N],h[N],ne[N],idx,w[N];
int d[N];
bool str[N];

void add(int a,int b,int c)
{
    e[idx]=b,w[idx]=c,ne[idx]=h[a],h[a]=idx++;
}

int Dijkstra()
{
    priority_queue<PII, vector<PII>, greater<PII>> heap;

    memset(d,0x3f,sizeof d);

    d[1]=0;

    heap.push({0,1});

    while(heap.size())
    {
        auto t=heap.top();

        heap.pop();

        int ver=t.second,distance=t.first;

        if(str[ver]) continue;

        str[ver]=true;

        for(int i=h[ver];i!=-1;i=ne[i])
        {
            int j=e[i];
            if(d[j]>d[ver]+w[i])
            {
                d[j]=d[ver]+w[i];
                heap.push({d[j],j});
            }
        }
    }

    if(d[n]==0x3f3f3f3f) return -1;
    else return d[n];
}


int main()
{
    cin>>n>>m;

    memset(h,-1,sizeof h);

    for(int i=1;i<=m;i++)
    {
        int a,b,c;
        cin>>a>>b>>c;
        add(a,b,c);
    }

    cout<<Dijkstra()<<'\n';

    return 0;
}

3.bellman-ford算法 O(nm)(853. 有边数限制的最短路 - AcWing题库)

#include <bits/stdc++.h>

using namespace std;

const int N = 201000;

int n,m,k;
int d[N],last[N];

struct Edge
{
    int a,b,w;

}edges[N];

void bellman_ford()
{
    memset(d,0x3f,sizeof d);

    d[1]=0;

    for(int i=0;i<k;i++)
    {
        memcpy(last,d,sizeof d);

        for(int j=0;j<m;j++)
        {
            auto e=edges[j];

            d[e.b]=min(d[e.b],last[e.a]+e.w);

        }
    }
}

int main()
{
    cin>>n>>m>>k;

    for(int i=0;i<m;i++)
    {
        int a,b,w;
        cin>>a>>b>>w;
        edges[i]={a,b,w};
    }

    bellman_ford();

    if(d[n]>0x3f3f3f3f/2) cout<<"impossible\n";
    else cout<<d[n]<<'\n';

    return 0;
}

4.SFPA算法O(m--nm)(851. spfa求最短路 - AcWing题库)

#include <bits/stdc++.h>

using namespace std;

const int N = 201000;

int n,m; 
int e[N],h[N],ne[N],w[N],idx;
int d[N];
bool str[N];

void add(int a,int b,int c)
{
    e[idx]=b,ne[idx]=h[a],w[idx]=c,h[a]=idx++;
}

void spfa()
{
    memset(d,0x3f,sizeof d);

    queue<int>q;
    d[1]=0;
    q.push(1);

    str[1]=true;

    while(q.size())
    {
        auto t=q.front();
        q.pop();

        str[t]=false;

        for(int i=h[t];i!=-1;i=ne[i])
        {
            int j=e[i];
            if(d[j]>d[t]+w[i])
            {
                d[j]=d[t]+w[i];


                if(!str[j])
                {
                    q.push(j);
                    str[j]=true;
                }
            }
        }
    }
}

int main()
{
    cin>>n>>m;

    memset(h,-1,sizeof h);

    while(m--)
    {
        int a,b,c;
        scanf("%d%d%d", &a, &b, &c);
        add(a,b,c);
    }

    spfa();

    if(d[n]==0x3f3f3f3f) cout<<"impossible\n";
    else cout<<d[n]<<'\n';

    return 0;
}

5.852. spfa判断负环 - AcWing题库

#include <bits/stdc++.h>

using namespace std;

const int N = 201000;

int n,m; 
int e[N],h[N],ne[N],w[N],idx;
int d[N],cnt[N];
bool str[N];

void add(int a,int b,int c)
{
    e[idx]=b,ne[idx]=h[a],w[idx]=c,h[a]=idx++;
}

int spfa()
{


    queue<int>q;


    for(int i=1;i<=n;i++)
    {
        str[i]=true;
        q.push(i);
    }


    while(q.size())
    {
        auto t=q.front();
        q.pop();

        str[t]=false;

        for(int i=h[t];i!=-1;i=ne[i])
        {
            int j=e[i];
            if(d[j]>d[t]+w[i])
            {
                d[j]=d[t]+w[i];
                cnt[j]=cnt[t]+1;

                if(cnt[j]>=n) return false;

                if(!str[j])
                {
                    q.push(j);
                    str[j]=true;
                }
            }
        }
    }
    return true;
}

int main()
{
    cin>>n>>m;

    memset(h,-1,sizeof h);

    while(m--)
    {
        int a,b,c;
        scanf("%d%d%d", &a, &b, &c);
        add(a,b,c);
    }

    if(spfa()) cout<<"No";
    else cout<<"Yes";

    return 0;
}

6.Floyd算法O(n^3)  (854. Floyd求最短路 - AcWing题库)

#include <bits/stdc++.h>

using namespace std;

const int N = 210, INF = 1e9;

int n, m, Q;
int d[N][N];

void floyd()
{
    for (int k = 1; k <= n; k ++ )
        for (int i = 1; i <= n; i ++ )
            for (int j = 1; j <= n; j ++ )
                d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
}

int main()
{
    scanf("%d%d%d", &n, &m, &Q);

    for (int i = 1; i <= n; i ++ )
        for (int j = 1; j <= n; j ++ )
            if (i == j) d[i][j] = 0;
            else d[i][j] = INF;

    while (m -- )
    {
        int a, b, c;
        scanf("%d%d%d", &a, &b, &c);
        d[a][b] = min(d[a][b], c);
    }

    floyd();

    while (Q -- )
    {
        int a, b;
        scanf("%d%d", &a, &b);

        int t = d[a][b];
        if (t > INF / 2) puts("impossible");
        else printf("%d\n", t);
    }

    return 0;
}

五.求最小生成树

1.Prim算法  (858. Prim算法求最小生成树 - AcWing题库

#include <bits/stdc++.h>

using namespace std;

const int N = 510,INF=0x3f3f3f3f;

int n,m; 
int d[N],g[N][N];
bool str[N];

int prim()
{
    memset(d,INF,sizeof d);

    int res=0;

    for(int i=0;i<n;i++)
    {
        int t=-1;
        for(int j=1;j<=n;j++)
        {
            if(!str[j]&&(t==-1||d[t]>d[j]))
            {
                t=j;
            }
        }

        if(i&&d[t]==INF) return INF;

        if(i) res+=d[t];

        str[t]=true;

        for(int j=1;j<=n;j++) d[j]=min(d[j],g[t][j]);
    }

    return res;
}

int main()
{
    cin>>n>>m;

    memset(g,INF,sizeof g);

    for(int i=1;i<=m;i++)
    {
        int a,b,c;
        cin>>a>>b>>c;
        g[a][b]=g[b][a]=min(g[a][b],c);
    }

    int tt=prim();

    if(tt==INF) cout<<"impossible";
    else cout<<tt<<'\n';

    return 0;
}

2.Kruskalw算法(859. Kruskal算法求最小生成树 - AcWing题库

#include <bits/stdc++.h>

using namespace std;

const int N = 201000;

int n,m; 
int p[N];


struct Node
{
    int x,y,z;
}st[N]; 

bool cmp(Node a,Node b)
{
    return a.z<b.z;
}

int find(int x)
{
    if(p[x]!=x) p[x]=find(p[x]);
    return p[x];
}

int Kruskal()
{
    int res=0,cnt=0;

    for(int i=0;i<m;i++)
    {
        int a=st[i].x,b=st[i].y,c=st[i].z;

        a=find(a),b=find(b);

        if(a!=b)
        {
            p[a]=b;
            res+=c;
            cnt++;
        }
    }

    if(cnt<n-1) return -1;
    return res;
}

int main()
{
    cin>>n>>m;
    for(int i=1;i<=n;i++) p[i]=i;

    for(int i=0;i<m;i++)
    {
        cin>>st[i].x>>st[i].y>>st[i].z;
    }

    sort(st,st+m,cmp);

    int tt=Kruskal();

    if(tt==-1) cout<<"impossible\n";
    else cout<<tt<<'\n';

    return 0;
}

六.染色法判定二分图(AcWing 860. 染色法判定二分图 - AcWing)

#include <bits/stdc++.h>

using namespace std;

const int N = 201000;

int n,m;
int color[N];
int e[N],ne[N],h[N],idx;

void add(int a,int b)
{
    e[idx]=b,ne[idx]=h[a],h[a]=idx++;
}

bool dfs(int u,int c)
{
    color[u]=c;

    for(int i=h[u];i!=-1;i=ne[i])
    {
        int j=e[i];
        if(!color[j])
        {
            if(!dfs(j,3-c)) return false;

        }
        else if(color[j]==c) return false;
    }
    return true;
}

int main()
{
    cin>>n>>m;

    memset(h,-1,sizeof h);

    while(m--)
    {
        int a,b;
        cin>>a>>b;
        add(a,b);
        add(b,a);
    }

    bool str=true;
    for(int i=1;i<=n;i++)
    {
        if(!color[i])
        {
            if(!dfs(i,1))
            {
                str=false;
                break;
            }
        }
    }

    if(str) cout<<"Yes\n";
    else cout<<"No\n";

    return 0;
}

七.匈牙利算法(861. 二分图的最大匹配 - AcWing题库)

#include <bits/stdc++.h>

const int N = 510,M=100100;

int n1,n2,m; 
int e[M],ne[M],h[M],idx;
bool str[N];
int match[N];

void add(int a,int b)
{
    e[idx]=b,ne[idx]=h[a],h[a]=idx++;
}

bool find(int x)
{
    for(int i=h[x];i!=-1;i=ne[i])
    {
        int j=e[i];
        if(!str[j])
        {
            str[j]=true;
            if(match[j]==0||find(match[j]))
            {
                match[j]=x;
                return true;
            }
        }
    }
    return false;
}

int main()
{
   scanf("%d %d %d", &n1, &n2, &m);
    
    memset(h,-1,sizeof h);
    
    while(m--)
    {
        int a,b;
        scanf("%d %d", &a, &b);
        add(a,b);
    }
	
	
	int res=0;
	for(int i=1;i<=n1;i++)
	{
	    memset(str,false,sizeof str);
	    
	    if(find(i)) res++;
	}
	
	printf("%d",res);
    return 0;
}

(制作不易,若要收藏请留下小红心)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值