自控第三章线性系统的时域分析法(超详细适合复习看,考点全覆盖)

 目录

1.线性系统的时域性能指标

        1.1延迟时间​

        1.2上升时间​

        1.3峰值时间​

        1.4调节时间​

        1.5超调量​

        1.6稳态误差​

2.一阶系统的时域分析

        2.1一阶系统的单位阶跃响应

3.二阶系统的时域分析

        3.1二阶系统的单位阶跃响应

        3.1.1过阻尼(​)

        3.1.2临界阻尼(​)

        3.1.3零阻尼(​)

        3.1.4欠阻尼(​)

        3.2欠阻尼二阶系统的瞬态响应指标分析

        3.2.1上升时间​

        3.2.2峰值时间​

        3.2.3t调节时间​

        3.2.4超调量​

4.二阶系统的改善

        4.1 误差的PD(比例—微分)控制

        4.3 PD控制与测速反馈控制的比较

5.线性系统的稳定性分析

        5.1线性系统稳定的充分必要条件

        5.2劳斯稳定判据

        5.2.1 劳斯表

        5.2.2劳斯判据的判定规则

        5.2.3劳斯稳定判据的特殊情况

6.控制系统的稳态误差

6.1 给定输入信号下的稳态误差

6.2系统的类型

6.3不同输入信号下的稳态误差

        6.3.1阶跃输入信号下稳态误差

        6.3.2 斜坡输入信号下稳态误差

        6.3.3 抛物线输入信号下稳态误差

6.4扰动信号下的稳态误差

1.线性系统的时域性能指标

        线性系统的时域性能指标是在单位阶跃函数作用下的响应指标

        1.1延迟时间t_{d}

        响应曲线第一次到达最大值一半的时间

        1.2上升时间t_{r}

        响应曲线第一次到达稳态值的时间

        1.3峰值时间t_{p}

        响应曲线第一次到达峰值的时间

        1.4调节时间t_{s}

        响应曲线第一次到达区间[0.95c(\infty ),1.05c(\infty )]内的时间(或者2%)

        1.5超调量\sigma %

        \sigma %=\frac{c(t)_{max}-c(\infty )}{c(\infty )}

        1.6稳态误差e_{ss}

        e_{ss}=\lim_{t\rightarrow \infty }e(t)=\lim_{t\rightarrow \infty }(r(t)-b(t))

2.一阶系统的时域分析

        2.1一阶系统的单位阶跃响应

        

                

                

                

        可以看到一阶系统的单位阶跃响应随着指数函数单调上升,稳态值为1。

3.二阶系统的时域分析

        

        3.1二阶系统的单位阶跃响应

        

        特征根为s_{1,2}=-\zeta \omega _{n}\pm \omega _{n}\sqrt{\zeta ^{2}-1}

        3.1.1过阻尼(\zeta >1)

        在这情况下闭环传递函数的两个极点都是实数,则响应曲线为单调函数,利用终值定理和初值定理可以得到响应曲线初始为0,终值为1,所有函数曲线单调递增,当\zeta增大时一个极点逐渐远离原点,一个极点逐渐靠近原点,远离原点的极点的影响可以忽略不计,可以把这时候的二阶系统简化为一阶系统分析,工程上当\zeta >1.25便可近似为一阶分析。如果s2到原点的距离超过了s1到原点距离的四倍,则调节时间t_{s}\approx 3T_{1}=3\frac{-1}{s_{1}}.        

        3.1.2临界阻尼(\zeta =1)

        此情况下两个闭环极点重合

        

         

        该响应曲线也是单调递增的,初值为0终值为1,而且快速性比较好 。

        3.1.3零阻尼(\zeta =0)

        

         

         响应曲线是振幅为一,角频率为\omega _{n}的等幅振荡。

        3.1.4欠阻尼(0<\zeta <1)

        当0<\zeta <1时,闭环函数的两个极点是共轭复数,

        s_{1,2}=-\zeta \omega _{n}\pm \omega _{n}\sqrt{\zeta ^{2}-1},响应曲线是振荡曲线,欠阻尼二阶系统的单位阶跃响应为:

                

         其中\omega _{d}=\omega _{n}\sqrt{1-\zeta ^{2}},极点的实部\zeta \omega _{n}为衰减系数决定了衰减的快慢,极点的虚部为振荡     频率,其中\beta =acrcos\zeta,称为阻尼角。可以知道阻尼系数对二阶系统单位阶跃响应有很大影响,当\zeta越小时,系统的上升时间越短但平稳性差,\zeta增大时,超调量减小,衰减加快,振荡性降低,平稳性好,\zeta增大到1及大于1以后,响应变为非周期无振荡的,但响应速度明显变慢,通常取\zeta=0.4~0.8,此时系统的超调量适度,调节时间较短,工程上将\zeta=0.707附近的系统称为二阶最优系统,0.707为最佳阻尼系数。

        3.2欠阻尼二阶系统的瞬态响应指标分析

        3.2.1上升时间

评论 24
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZnDream66

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值