自动控制原理复习第七章——非线性系统分析

本文探讨了控制系统中的典型非线性特性,包括死区、饱和、间隙和继电特性,强调了非线性系统的特点如叠加原理的不满足、稳定性依赖因素、正弦响应的复杂性以及串联部件位置的重要性。文章深入介绍了描述函数法和相平面法在分析非线性系统中的应用,以及Matlab在非线性控制中的实用案例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1.控制系统中的典型非线性特性

1.1典型非线性特性

1.1.1死区特性

1.1.2饱和特性

1.1.3间隙特性

1.1.4继电特性

1.2非线性系统的特点

1.2.1不满足叠加原理

1.2.2稳定性

1.2.3正弦响应

1.2.4自激振荡

1.2.5串联部件之间不能互换位置

2.描述函数法

2.1描述函数法的概念

2.2典型非线性特性的描述函数

2.2.1理想继电特性

2.2.2饱和特性

2.2.3死区特性

2.3非线性系统的描述函数分析法

2.3.1运用描述函数法的前提条件

2.3.2非线性系统的稳定性分析

2.3.3自激振荡的特点及分析

3.相平面法

3.1相平面的基本概念

3.1.1相平面、相轨迹

3.1.2相轨迹的性质

3.2奇点和极限环

3.2.1奇点

3.2.2极限环

3.3相轨迹的绘制

3.3.1解析法

3.3.2等倾斜法

4.非线性系统的相平面分析法

5.Matlab在非线性控制系统中的应用


1.控制系统中的典型非线性特性

1.1典型非线性特性

1.1.1死区特性

        一些测量、变换不见和各种放大器。在零值附近常有不灵敏区;例如作为执行元件的电动机,由于轴上有静摩擦,施加给电动机的电压必须达到某一数值,即所谓的空载起动电压,这个空载起动电压就是电动机的死区电压。

1.1.2饱和特性

        在控制系统中,许多元器件的运动范围由于受到能源、功率等条件的限制,都有饱和输出特性,有时也出于工程的需要,人为引入饱和特性用于限制过载。

1.1.3间隙特性        

        在机械传动中,由于加工精度的限制以及运动件互相配合的需要,总会有一些间隙存在,如在齿轮传动中,为保证转动灵活,不发生卡死现象,是容许有少量间隙的,由于间隙的存在,当机构反向进行运动时,主动齿轮总要转过该空行程后才能推动从轮反向,二者泵同步转动,从而形成环状间隙特性。

1.1.4继电特性

        继电器是广泛应用于控制系统和保护装置中的器件,继电器的种类较多,有理想继电器、具有死区的继电器、具有滞环的继电器等,死区的存在是由于继电器线圈需要一定数量的电流才能产生吸合作用,滞环的存在是由于铁磁元件磁滞特性使继电器的吸上电流与释放电流不一样。

1.2非线性系统的特点

1.2.1不满足叠加原理

        线性系统的响应形式与输入信号的大小及初始条件无关,通常在典型输入信号与零初始条件下研究系统的特性。而非线性系统的响应形式与输入信号的大小及初始条件有关,当输入信号的大小发生变化或初始条件发生变化时,响应形式可能从单调变成振荡或者从振荡变为单调特性。

1.2.2稳定性

        对于线性系统,系统的稳定性只取决于系统的结构和参数,而和初始条件、外加作用没有关系。非线性系统的稳定性,除了和系统的结构形式及参数大小有关以外,还和初始条件和外加作用有关。

1.2.3正弦响应

        对于线性系统,当输入为正弦信号时,系统的稳态输出为同频正弦信号,输出的稳态分量和输入信号仅在幅值和相位上有所不同;而对于非线性系统,当输入为正弦信号时,输出不再是简单的同频正弦信号,除了含有同频率的基波成分外,还常常包含有输入信号中所没有的频率分量。

1.2.4自激振荡

        非线性系统在没有外界信号作用时,也有可能产生一定频率和幅值的周期振荡,并且在受到扰动时,周期振荡运动仍有可能保持原来的频率与振幅不变,自激振荡时非线性系统的一个重要特征。

1.2.5串联部件之间不能互换位置

        在线性系统中,互换串联部件之间的位置不影响系统的性能,在非线性系统中,交换非线性与线性部件之间的位置,或者不同非线性环节之间的位置都会改变系统的性能。

2.描述函数法

        描述函数法用于分析无外加作用的情况下,非线性系统的稳定性与自激振荡问题,他对系统结构、非线性环节和一个线性部分闭环连接的形式,且非线性环节的输入、输出特性是奇对称的,线性部分具有较好的低通滤波性能

2.1描述函数法的概念

        本质上描述函数法就是在正弦输入下的非线性环节输出只取基波分量忽略其他高次谐波分量的一种近似方法。设非线性环节的输入、输出特性为

                                                y=f(x)

        在输入正弦信号x(t)=Asinwt的作用下,其输出一般是非正弦周期信号,将y(t)展开为傅里叶级数,得:y(t)=A_{0}+\sum_{n=1}^{\infty }(A_{n}cosnwt+B_{n}sinnwt)=A_{0}+\sum_{n=1}^{\infty }Y_{n}sin(nwt+\varphi _{n})

其中前者为直流分量,后者为第n次谐波分量,且有:x(t)=Asinwt

        Y_{n}=\sqrt{A_{n}^{2}+B_{n}^{2}}        \varphi _{n}=arctan\frac{A_{n}}{B_{n}}

        A_{n}=\frac{1}{\pi}\int_{0}^{2\pi}y(t)cosnwtdwt         B_{n}=\frac{1}{\pi}\int_{0}^{2\pi}y(t)sinnwtdwt

        A_{0}=\int_{0}^{2\pi}y(t)dwt

        若y(t)是奇函数,则A0=0,y_{1}(t)=A_{1}coswt+B_{1}sinwt=Y_{1}sin(wt+\varphi _{1})

定义正弦输入信号作用下,非线性环节的稳态输出中一次谐波分量和输入信号的复数比为非线性环节的描述函数用N(A)表示

        N(A)=\frac{B_{1}}{A}+j\frac{A_{1}}{A}

2.2典型非线性特性的描述函数

2.2.1理想继电特性

        y(t)=\left\{\begin{matrix} M &x(t)>0 \\ -M&x(t)<0\end{matrix}\right.

当输入x(t)=Asinwt时,输出为

        y(t)=\left\{\begin{matrix} M &0<wt<\pi \\ -M&\pi<wt<2\pi\end{matrix}\right.

A0=0,A1=0,B1=\frac{1}{\pi}(\int_{0}^{\pi}Msinwtdwt+\int_{\pi}^{2\pi}-Msinwtdwt)=\frac{4M}{\pi}

所以理想继电环节的负倒描述函数为:

        -\frac{1}{N(A)}=-\frac{A\pi}{4M}

2.2.2饱和特性

        N(A)=\frac{2k}{\pi}[arcsin\frac{a}{A}+\frac{a}{A}\sqrt{1-(\frac{a}{A})^{2}}]A>a

2.2.3死区特性

        N(A)=\frac{2k}{\pi}[\frac{\pi}{2}-arcsin\frac{\Delta }{A}+\frac{\Delta }{A}\sqrt{1-(\frac{\Delta }{A})^{2}}]

2.3非线性系统的描述函数分析法

2.3.1运用描述函数法的前提条件

        非线性系统的框图可以简化成只有一个非线性环节N(A)和一个线性部分G(s)串联的形式;

        非线性环节的输入、输出特性是奇对称的,保证非线性特性在正弦输入信号下的输出不包含常数分量,而且非线性环节的输出y(t)中基波含量占优

        线性部分具有较好的低通滤波特性,非线性环节产生的高次谐波分量可以在系统内部被充分地衰减掉

2.3.2非线性系统的稳定性分析

2.3.3自激振荡的特点及分析

3.相平面法

3.1相平面的基本概念

3.1.1相平面、相轨迹

3.1.2相轨迹的性质

3.2奇点和极限环

3.2.1奇点

3.2.2极限环

3.3相轨迹的绘制

3.3.1解析法

3.3.2等倾斜法

4.非线性系统的相平面分析法

5.Matlab在非线性控制系统中的应用

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZnDream66

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值