数据分析案例-电影数据可视化分析

该博客通过可视化分析了2011-2021年的电影数据,包括各年份总票房的趋势、电影比例、平均票价、片长分布、导演喜爱度、地区分布、发行公司排名、片长与评分的关系、特征相关性以及制片制式和电影类型的偏好。数据预处理步骤包括缺失值处理、单位转换和重复项去除。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据介绍

数据为2011-2021电影数据

可视化分析

首先导入本次项目需要的包和数据

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from pyecharts.charts import Pie
from pyecharts import options as  opts 
from pyecharts.globals import ThemeType
sns.set_style('ticks')
import warnings
warnings.filterwarnings('ignore') # 忽略警告
plt.rcParams['font.sans-serif'] = ['SimHei'] #解决中文显示
plt.rcParams['axes.unicode_minus'] = False   #解决符号无法显示

data = pd.read_excel('data.xlsx')
data.head()

评论 246
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

艾派森

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值