人工免疫算法学习通解

人工免疫算法(Artificial Immune System,AIS)是一种基于免疫系统的启发式优化算法,其基本思想是模拟生物体内的免疫系统对抗外部威胁的过程,通过生成、选择、进化、记忆和协同等机制来搜索最优解。

AIS 通常包含两个主要的阶段:学习和演化。在学习阶段,算法通过对问题进行分析,生成基于抗体的解向量集合,并对其进行评估和选择。在演化阶段,算法基于选择的解向量集合,采用进化算子(例如变异、重组、选择等)来生成新的解向量,并更新解向量集合,以逐步寻找最优解。

与其他优化算法相比,AIS 具有以下特点:

  • 具有较好的全局搜索能力,可以在多峰、高维等复杂问题中寻找最优解;
  • 具有较强的自适应性,可以根据问题自动调整参数,不需要太多的先验知识;
  • 可以有效地处理约束条件和不可微问题。

由于其独特的特点和良好的性能,在许多领域中得到了广泛应用,例如机器学习、数据挖掘、组合优化、信号处理等。

需要注意的是,AIS 是一种较为复杂的算法,其实现方式和具体应用与问题相关,需要结合具体问题进行细致的调试和优化。

下面是一个使用 Python 实现的简单的人工免疫算法,用于解决单目标优化问题。该算法的目标函数为 Rosenbrock 函数,其形式为:

f(x,y)=(a-x)^2+b(y-x^2)^2

其中,a=1,b=100。

在该算法中,我们生成一个抗体库,然后根据适应度函数(即目标函数)对抗体进行排序,选择适应度较好的一部分作为种群,然后采用变异和克隆等操作来更新种群,以求得更优的解。具体的实现代码如下所示:

import numpy as np

# 定义目标函数
def rosenbrock(x, y):
    a = 1.0
    b = 100.0
    return (a - x) ** 2 + b * (y - x ** 2) ** 2

# 生成初始抗体库
def generate_population(population_size):
    population = []
    for i in range(population_size):
        x = np.random.uniform(-5, 5)
        y = np.random.uniform(-5, 5)
        population.append([x, y])
    return population

# 计算适应度函数值
def evaluate_fitness(population):
    fitness = []
    for i in range(len(population)):
        x, y = population[i]
        fitness.append(1.0 / rosenbrock(x, y))
    return fitness

# 选择适应度较好的抗体
def select(population, fitness, num_selected):
    sorted_indices = np.argsort(fitness)[::-1]  # 按适应度降序排序
    selected_indices = sorted_indices[:num_selected]
    selected_population = [population[i] for i in selected_indices]
    return selected_population

# 变异操作
def mutate(antibody, mutation_rate):
    mutated_antibody = antibody.copy()
    for i in range(len(antibody)):
        if np.random.uniform(0, 1) < mutation_rate:
            mutated_antibody[i] = np.random.uniform(-5, 5)
    return mutated_antibody

# 克隆操作
def clone(antibody, clone_size):
    cloned_population = []
    for i in range(clone_size):
        cloned_antibody = [antibody[j] + np.random.normal(0, 0.1) for j in range(len(antibody))]
        cloned_population.append(cloned_antibody)
    return cloned_population

# 更新抗体库
def update_population(population, num_selected, mutation_rate, clone_size):
    fitness = evaluate_fitness(population)
    selected_population = select(population, fitness, num_selected)
    new_population = []
    for antibody in selected_population:
        mutated_antibody = mutate(antibody, mutation_rate)
        cloned_population = clone(mutated_antibody, clone_size)
        new_population.extend(cloned_population)
    return new_population


人工免疫算法的应用非常广泛,下面以求解无约束优化问题为例进行说明。

假设我们要求解以下无约束优化问题:

我们可以使用人工免疫算法进行求解。

首先,我们需要定义免疫算法所需要的一些参数:

  • 种群大小 N
  • 感知范围 r
  • 免疫浓度 c
  • 选择比例 p_s
  • 变异概率 p_m
  • 最大迭代次数 max_iter
  • 初始种群 X
  • 适应度函数 fitness

其中,适应度函数可以根据具体问题进行定义。在本例中,适应度函数为

                                fitness(x)=x_1^2+x_2^2-2x_1-4x_2+5。

下面是使用Python实现的人工免疫算法代码:

import numpy as np
import random

# 定义适应度函数
def fitness(x):
    return x[0]**2 + x[1]**2 - 2*x[0] - 4*x[1] + 5

# 定义人工免疫算法函数
def AIS(N, r, c, ps, pm, max_iter, X):
    # 初始化种群
    pop_size = len(X)
    pop = X.copy()
    # 记录最优解和最优适应度值
    best_x = None
    best_fitness = float('inf')
    # 开始迭代
    for iter in range(max_iter):
        # 计算抗体浓度
        density = np.zeros(pop_size)
        for i in range(pop_size):
            for j in range(pop_size):
                if i != j and np.linalg.norm(pop[i]-pop[j]) < r:
                    density[i] += 1
        # 选择操作
        ps_size = int(ps * pop_size)
        ps_index = np.argsort(density)[:ps_size]
        # 变异操作
        for i in range(ps_size, pop_size):
            # 选择一个抗体和一个邻域
            j = random.choice(ps_index)
            neighbor = np.random.normal(loc=pop[j], scale=c, size=2)
            # 变异操作
            if random.random() < pm:
                neighbor = neighbor + np.random.normal(scale=1)
            # 更新种群
            if fitness(neighbor) < fitness(pop[j]):
                pop[j] = neighbor
                # 更新最优解
                if fitness(neighbor) < best_fitness:
                    best_x = neighbor
                    best_fitness = fitness(neighbor)
    return best_x, best_fitness

# 设置参数
N = 20
r = 1
c = 0.2
ps = 0.2
pm = 0.1
max_iter = 100
X = np.random.uniform(-5, 5, size=(N, 2))

# 调用函数求解问题
best_x, best_fitness = AIS(N, r, c, ps, pm, max_iter, X)

# 输出结果
print("最优解:", best_x)
print("最优适应度值:", best_fitness)

在上述代码中,我们首先定义了适应度函数 fitness,然后定义了人工免疫算法函数 AIS。在函数中,我们首先初始化种群,并记录最优解和最优适应度值。然后,我们开始迭代,计算抗体浓度,进行选择操作和变异操作,并更新种群。在迭代结束后,我们输出最优解和最优适应度值。

  • 5
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
原生人工免疫算法(Native Artificial Immune Algorithm,NAIA)和人工免疫算法(Artificial Immune Algorithm,AIA)是两种不同的免疫算法。 原生人工免疫算法是一种基于生物免疫系统的计算模型,它模拟了人体免疫系统中的主要机制和过程。它通过构建抗体库、选择、克隆和突变等操作来搜索最优解。原生人工免疫算法主要包括以下几个步骤: 1. 初始化:生成初始抗体库。 2. 选择:根据适应度函数选择一部分抗体作为父代。 3. 克隆:根据适应度值克隆父代抗体,生成克隆群体。 4. 突变:对克隆群体进行突变操作,引入新的抗体。 5. 更新:根据适应度函数更新抗体库。 6. 终止条件:达到预定的终止条件。 人工免疫算法是一种基于免疫系统的启发式优化算法,它通过模拟免疫系统中的抗体、抗原和免疫记忆等概念来进行问题求解。人工免疫算法主要包括以下几个步骤: 1. 初始化:生成初始抗体群体。 2. 选择:根据适应度函数选择一部分抗体作为父代。 3. 克隆:根据适应度值克隆父代抗体,生成克隆群体。 4. 变异:对克隆群体进行变异操作,引入新的抗体。 5. 更新:根据适应度函数更新抗体群体。 6. 终止条件:达到预定的终止条件。 区别: 1. 原生人工免疫算法是一种基于生物免疫系统的计算模型,而人工免疫算法是一种基于免疫系统的启发式优化算法。 2. 在选择操作上,原生人工免疫算法根据适应度函数选择一部分抗体作为父代,而人工免疫算法也是根据适应度函数选择一部分抗体作为父代。 3. 在突变操作上,原生人工免疫算法对克隆群体进行突变操作,而人工免疫算法对克隆群体进行变异操作。 4. 在更新操作上,原生人工免疫算法根据适应度函数更新抗体库,而人工免疫算法根据适应度函数更新抗体群体。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

湘大小菜鸡

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值