【comfyui FLUX 】—ControlNet模特人物姿态控制【人物角色一致性出图】

哈喽这里是海绵

img

ControlNet 人物姿态控制,因为这是aigc最实用,最有价值的功能之一,特别是flux模型,有了深度cn的支持,可用性大大提高。

img

本实例主要使用FLUX.1-dev-ControlNet-Union-Pro-InstantX.safetensors模型,提示词如下:

1girl,A beautiful Asian girl with fair skin, she is sitting on a chair by the river outdoors, She wears a white top and skinny jeans,holding a fish in one hand and a Taiwan fishing rod in the other, smiling and looking at the viewer, this is an outdoor photograph with rich details, green vegetation and river in the distance, masterpiece, real, best quality,

img

注意ControlNet强度和flux采样降噪设置

出图效果如下:

img

img

img

为了帮助大家更好地掌握 ComfyUI,我在去年花了几个月的时间,撰写并录制了一套ComfyUI的基础教程,共六篇。这套教程详细介绍了选择ComfyUI的理由、其优缺点、下载安装方法、模型与插件的安装、工作流节点和底层逻辑详解、遮罩修改重绘/Inpenting模块以及SDXL工作流手把手搭建。

由于篇幅原因,本文精选几个章节,详细版点击下方卡片免费领取
请添加图片描述

一、ComfyUI配置指南
  • 报错指南
  • 环境配置
  • 脚本更新
  • 后记

img

二、ComfyUI基础入门
  • 软件安装篇
  • 插件安装篇

img

三、 ComfyUI工作流节点/底层逻辑详解
  • ComfyUI 基础概念理解
  • Stable diffusion 工作原理
  • 工作流底层逻辑
  • 必备插件补全

img

四、ComfyUI节点技巧进阶/多模型串联
  • 节点进阶详解
  • 提词技巧精通
  • 多模型节点串联

img

五、ComfyUI遮罩修改重绘/Inpenting模块详解
  • 图像分辨率
  • 姿势

img

六、ComfyUI超实用SDXL工作流手把手搭建
  • Refined模型
  • SDXL风格化提示词
  • SDXL工作流搭建

img

由于篇幅原因,本文精选几个章节,详细版点击下方卡片免费领取

img
请添加图片描述

### FluxControlNet 集成概述 Flux 是一种新兴的机器学习框架,以其高效性和灵活性著称[^4]。该框架不仅能够提供强大的计算能力,还支持多种插件扩展功能,其中就包括了ControlNet的支持。 #### ComfyUI FLUX ControlNet 工作流展示 具体来说,在ComfyUI FLUX ControlNet工作流中,通过集成ControlNet来增强输生成的效果。此工作流程提供了两种主要类型的条件输入:基于深度的信息和基于Canny边缘检测的结果[^1]。这种设计使得模型可以根据不同的特征来进行更精确的学习与预测。 #### 构建模块化的工作流环境 为了实现上述目标,构建了一个结构化的操作界面,它由几个关键部分组成: - 采样控制区允许调整参数以优化性能表现; - ControlNet 控制区则专注于特定任务导向的功能定制; - 最终片生成保存区完成结果文件管理的任务[^2]。 这些组件共同作用于整个数据流转过程之中,从而实现了高效的自动化流水线作业模式。 #### 应用实例——FLUX-Controlnet-Inpainting 阿里推FLUX-Controlnet-Inpainting 插件进一步拓展了这一领域的能力边界。作为 ALI FLUX-dev 的一部分,这个工具可以有效地修复像中的遮罩区域,并使其自然地融合到原始场景当中去。尽管现在仍处于alpha测试阶段,但已经展现了良好的应用前景[^3]。 ```python from flux import load_model, process_image from controlnet import apply_controlnet def integrate_flux_and_controlnet(image_path, mask_area): # 加载预先训练好的Flux模型 model = load_model('path_to_pretrained_flux') # 处理传入的processed_img = process_image(image_path) # 使用ControlNet进行特定任务(如修补) result = apply_controlnet(processed_img, mask_area=mask_area) return result ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值