StableDiffusion学习笔记-如何生成高清多细节图片

图片

图片我们今天来学习怎样生成高清并且细节丰富的图片,我们以真人系大模型分别从以下参数和功能分别验证:

1、文生图分辨率

2、采样方法

3、迭代步数

4、提示词引导系数

5、Refiner(SDXl模型使用)

6、高清放大(高分辨率修复、Tiled Diffusion插件)

有需要stable diffusion整合包以及提示词插件,可以扫描下方,免费获取

请添加图片描述

文生图分辨率

图片文生图的时候要根据大模型的类型设置分辨率:

SD1.5模型使用512X512左右的分辨率,分辨率过高就会多头多手,人物肖像我们把分辨率设置为512X768

SDXL模型使用1024X1024左右的分辨率,分辨率过低就会画面缺失。

采样方法

图片我们对比6种最常用的采样方法:

图片

Euler a表现较为普通,适合二次元图片,SDE的采样器渲染时间较长,生成的图片比较网红脸,喜欢的可以选择,其中Restart锐度和清晰度是最高的

迭代步数

图片我们先不管渲染时间的问题,我们先看一下迭代步数多少可以获得较高的细节:

图片

迭代步数30和35的差别很小,我们可以把迭代步数设置为30

提示词引导系数

图片提示词引导系数CFG过小SD对不会理会我们的提示词,过大就会出现一些奇怪的画面,所以我们对比7-15之间的画质细节:

图片

CFG为15的时候图片有一点过拟合,11和13时明显要比7清晰度和细节更好,我们CFG设置为10-12

Refiner(SDXl模型使用)

图片如果你使用的是SDXL大模型,那么你可以在生图的时候开启Refiner功能,模型选择SDXL_refiner_1.0.safetensors,切换时机设置为0.9

图片

高清放大

图片我一般会分两步放大,第一步高分辨率修复(Hires. fix),我们就可以得到一张1-2K图片(根据电脑配置)。

图片

图片

第二步将图片发送到图生图使用Tiled Diffusion插件插件进行放大,可以放大到4-8K(根据电脑配置)。

图片

图片

这里直接将该软件分享出来给大家吧~

1.stable diffusion安装包

随着技术的迭代,目前 Stable Diffusion 已经能够生成非常艺术化的图片了,完全有赶超人类的架势,已经有不少工作被这类服务替代,比如制作一个 logo 图片,画一张虚拟老婆照片,画质堪比相机。

最新 Stable Diffusion 除了有win多个版本,就算说底端的显卡也能玩了哦!此外还带来了Mac版本,仅支持macOS 12.3或更高版本

在这里插入图片描述

2.stable diffusion视频合集

我们在学习的时候,往往书籍源码难以理解,阅读困难,这时候视频教程教程是就很适合了,生动形象加上案例实战,一步步带你入坑stable diffusion,科学有趣才能更方便的学习下去。

在这里插入图片描述

3.stable diffusion模型下载

stable diffusion往往一开始使用时图片等无法达到理想的生成效果,这时则需要通过使用大量训练数据,调整模型的超参数(如学习率、训练轮数、模型大小等),可以使得模型更好地适应数据集,并生成更加真实、准确、高质量的图像。

在这里插入图片描述

4.stable diffusion提示词

提示词是构建由文本到图像模型解释和理解的单词的过程。可以把它理解为你告诉 AI 模型要画什么而需要说的语言,整个SD学习过程中都离不开这本提示词手册。

在这里插入图片描述

5.SD从0到落地实战演练

在这里插入图片描述

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名SD大神的正确特征了。

这份完整版的stable diffusion资料我已经打包好,需要的点击下方插件,即可前往免费领取!

请添加图片描述

### 关于 Stable Diffusion 生成图像的课程资料 对于希望了解如何通过 Stable Diffusion 生成图像并将其应用于实际项目中的学习者来说,可以参考一些特定资源。Stable Diffusion 是一种基于深度学习的技术,能够根据给定的文字描述创建高质量的艺术作品或照片级逼真的图片[^2]。 #### 获取教程和幻灯片的方法 1. **在线教育平台** 许多知名的在线教育网站提供了有关 AI 图像生成技术的课程,其中包括对 Stable Diffusion 的介绍及其应用案例分析。这些平台上往往会有配套的教学视频、PPT 和练习材料供学员下载使用。 2. **学术会议和技术研讨会** 参加与计算机视觉或者机器学习相关的国际国内会议也是获取最新研究成果的好途径之一。这类活动经常发布由专家准备的专业演示文档(PPT),其中会涉及最新的算法进展以及具体实施细节。 3. **开源社区贡献者的分享** GitHub 或其他代码托管服务上有大量开发者维护着自己的个人博客或是项目主页,在这里不仅可以找到详细的开发指南还可以看到作者精心制作的学习笔记形式的 PPT 文件。 4. **社交媒体群组讨论区** 加入专门针对AI艺术创作的兴趣小组,成员们经常会交流心得体验并且互相推荐优质的参考资料链接,有时候甚至可以直接获得他人整理好的全套教学包。 ```python import requests from bs4 import BeautifulSoup def search_stable_diffusion_resources(): url = 'https://example.com/search?q=stablediffusion+tutorial+ppt' response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') results = [] for item in soup.select('.search-result'): title = item.find('h3').get_text() link = item.find('a')['href'] description = item.find('p').get_text() result = { 'title': title, 'link': link, 'description': description } results.append(result) return results[:5] resources = search_stable_diffusion_resources() for resource in resources: print(f"{resource['title']}\n{resource['link']}\n{resource['description']}\n\n") ``` 此段 Python 脚本展示了如何编写简单的网络爬虫程序去抓取互联网上的公开可用资源列表(注意:这只是一个示例框架,请勿直接运行)。它可以帮助快速定位到可能含有所需内容的地方。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值