哈喽这里是海绵
这次使用的是Controlnet SoftEdge软边缘 控制层,可以通过多种混合控制层(需要灵活调节数值,反复尝试,以得到最佳效果)
打开 使用SoftEdge软边缘 控制层,之前介绍过,手绘线稿拍照或3D建模有着更加灵活、便携的优势,如可以方便的摆出各种姿态,生成图片后可以快速更改,可以节省大量时间,简化工作流程。
手绘草稿不必过于精细,但该交待出来的细节,还是要刻画好,方便
AIGC识别,也可以通过精华提示词,来获得最佳效果。
输入提示词:
一个漂亮的亚洲年轻女人,皮肤白皙,身穿牛仔裙和吊带背心,她倒立的躺在地上,双手放在头发旁边,背景是简单渐变背景,
这里首先使用的sdxl模型为:
DreamShaper XL v2.1 Turbo 闪电
作者:Lykon
v2.1 Turbo
Sampler: DPM++ SDE Karras
CFG scale: 2
Steps: 8
生成简单的低分辨率图片后,使用的FLUX模型为:
F.1-dev-fp8
此版本11G显存可用,满血常规版本需要电脑运行内存不低于32G,实测4090占满显存,推荐dev-fp8版本本地可跑。
本模型生成的输出可用于个人、科学和研究目的,需遵照原模型的商用许可
通过混合多种控制层,如深度、软边缘等,不断尝试出最佳出图效果。(注意调整参数数值)
人物大概姿态确定后,可以使用上述介绍的FLUX模型+lora模型重新生成采样,注意降噪数值要调低。
ComfyUI与ControlNet的简单介绍:
ComfyUI结合ControlNet技术,为数字艺术和图像处理领域带来了革命性的创新。通过简单易用的工作流,用户可以将线稿快速转化为高质量的真人图像,从而实现从创意到现实的无缝衔接
ComfyUI是一款基于节点的图形用户界面工具,专为Stable Diffusion等AI模型设计,支持用户通过拖拽节点的方式构建复杂的图像生成工作流。ControlNet则是Stable Diffusion的一个重要扩展插件,通过引入条件生成对抗网络(CGAN),允许用户对生成的图像进行精细控制。
ControlNet的核心功能包括对线条、深度、姿态等关键特征的捕捉与调整。例如,Canny细线预处理器能够清晰地提取图像的边缘和轮廓,而Realistic预处理器则能从照片中提取黑白线条,用于生成逼真的真人图像。此外,ControlNet还支持多种预处理器和模型的组合使用,如结合Face ID和深度控制,实现高精度的人物转绘。
二、ComfyUI工作流中的关键节点
在ComfyUI的工作流中,ControlNetApply是一个核心节点,它负责将ControlNet的控制参数应用于图像生成过程。以下是ComfyUI中与线稿转真人相关的几个重要节点及其作用:
LoadImage:加载线稿图像作为输入。
CLIPTextEncode:对线稿图像进行文本编码,以理解图像内容。
ControlNetApply:通过调整生成参数,增强图像生成过程的控制性。
VAEDecode:解码生成的图像,使其更加清晰和多样化。
ImageUpscaleWithModel:对生成的图像进行放大处理,确保细节的清晰度。
通过这些节点的协同工作,用户可以轻松地将线稿转化为逼真的真人图像,并保存为高质量的图片文件。
ControlNet在ComfyUI中的具体应用
ControlNet在ComfyUI中的应用主要体现在以下几个方面:
线条提取与优化:通过Canny细线预处理器,ControlNet能够精确地提取线稿中的边缘和轮廓,为后续的真人图像生成提供基础。
风格化与细节增强:结合不同的预处理器(如Realistic或Coarse),ControlNet可以生成具有不同风格的真人图像。例如,Realistic模式适合从照片中提取线条,而Coarse模式则适合更自由的线条绘制。
多维度控制:通过深度控制和姿态控制,用户可以进一步调整生成图像的人物动作和表情,使其更加符合预期。
高质量输出:ControlNet结合SDXL等先进模型,能够生成高分辨率、高细节的真人图像
ComfyUI结合ControlNet技术的优势在于其高效、易用的工作流设计。用户无需复杂的参数设置,只需通过简单的节点操作即可完成从线稿到真人图像的转换。此外,ComfyUI还支持自定义脚本和检查点功能,进一步提升了创作的灵活性和效率。
随着技术的不断进步,ComfyUI和ControlNet的应用范围将进一步扩大。未来,它们有望在游戏开发、影视制作、虚拟现实等领域发挥更大的作用。
ComfyUI与ControlNet的结合为数字艺术和图像处理领域带来了革命性的变化。通过简单易用的工作流和强大的控制能力,用户可以轻松地将线稿转化为逼真的真人图像。这一技术不仅简化了创作流程,还大大提升了图像生成的质量和效率。随着技术的不断发展,我们有理由相信,ComfyUI和ControlNet将在未来的数字艺术创作中扮演更加重要的角色。
下面画一个人物头像的草稿,使用姿态控制层,生成相关图片,注意提示词要详细介绍人物特征细节。
粗略总结出三点:
01.线稿可以画出大概姿态,但想要重点展示的细节要在草稿上交待清楚,方便AIGC识别。
02.如果使用的是国外大模型,提示词中要写好亚洲人种,否则生成的图会出现非亚洲面孔。
03.多种Controlnet 控制层一定要调节数值,数值过大生成的图片反而不尽人意。
为了帮助大家更好地掌握 ComfyUI,我在去年花了几个月的时间,撰写并录制了一套ComfyUI的基础教程,共六篇。这套教程详细介绍了选择ComfyUI的理由、其优缺点、下载安装方法、模型与插件的安装、工作流节点和底层逻辑详解、遮罩修改重绘/Inpenting模块以及SDXL工作流手把手搭建。
由于篇幅原因,本文精选几个章节,详细版点击下方卡片免费领取
一、ComfyUI配置指南
- 报错指南
- 环境配置
- 脚本更新
- 后记
- …
二、ComfyUI基础入门
- 软件安装篇
- 插件安装篇
- …
三、 ComfyUI工作流节点/底层逻辑详解
- ComfyUI 基础概念理解
- Stable diffusion 工作原理
- 工作流底层逻辑
- 必备插件补全
- …
四、ComfyUI节点技巧进阶/多模型串联
- 节点进阶详解
- 提词技巧精通
- 多模型节点串联
- …
五、ComfyUI遮罩修改重绘/Inpenting模块详解
- 图像分辨率
- 姿势
- …
六、ComfyUI超实用SDXL工作流手把手搭建
- Refined模型
- SDXL风格化提示词
- SDXL工作流搭建
- …
由于篇幅原因,本文精选几个章节,详细版点击下方卡片免费领取